Exercice 1

I-1. s et s' sont des similitudes indirectes, donc leur composée $r = s' \circ s$ est une similitude directe. C'est de plus une isométrie comme composée d'isométries.

Par ailleurs, I est un point fixe de r, donc r est une rotation de centre I. Soit θ son angle.

Pour un point M de D, différent de I, D' est bissectrice de l'angle $(\overrightarrow{IM}, \overrightarrow{Ir(M)})$ donc θ est le double de l'angle $(\overrightarrow{u_D}, \overrightarrow{u_{D'}})$ de vecteurs directeurs $\overrightarrow{u_D}$ et $\overrightarrow{u_{D'}}$ des droites \overrightarrow{D} et D'.

I-2. (a) D'après la question précédente : $s_2 \circ s_1 = r^2$ et $s_3 \circ s_1 = r$.

Toute symétrie axiale est sa propre réciproque. Ainsi :
$$\begin{cases} M_2 = s_2(M) = s_2 \circ s_1(M_1) = r^2(M_1) \\ M_3 = s_3(M) = s_3 \circ s_1(M_1) = r(M_1) \end{cases}$$

- (b) $M_1M_2M_3$ est donc un triangle équilatéral indirect de centre O.
- II-1. M_1 est le symétrique de M par rapport à l'axe des abscisses, donc d'affixe $\overline{z} = \rho e^{-i\theta}$. $M_2 = r^2(M_1)$ donc M_2 est d'affixe $e^{4i\pi/3}\overline{z} = j^2\overline{z}$.

 $M_3 = r(M_1)$ donc M_3 est d'affixe $e^{2i\pi/3}\overline{z} = j\overline{z}$.

II-2. Notons s la symétrie axiale d'axe (BC). J est l'intersection de (OA) et (BC), et ces deux droites sont orthogonales donc $s \circ s_1 = s_J$

où s_J la symétrie de centre J (qui est aussi la rotation de centre J d'angle de mesure π).

Ainsi $s = s_J \circ s_1$ donc $M_4 = s_J (s_1(M)) = s_J(M_1) : J$ est le milieu du segment $[M_1, M_4]$. M_4 a pour d'affixe $-1 - \overline{z} = -1 - \rho e^{-i\theta}$.

II-3. (a) On prend $z \neq 0$ i.e. $M \neq O$.

 $M_2,\,M_3$ et M_4 sont alignés si et seulement si $S=rac{(-1-\overline{z})-j\overline{z}}{j^2\overline{z}-j\overline{z}}$ est réel.

Or : $S = \frac{-1 + j^2 \overline{z}}{-i\sqrt{2}\overline{z}}$ donc M_2 , M_3 et M_4 sont alignés si et seulement si :

$$\frac{-1+j^2\overline{z}}{-\mathrm{i}\overline{z}} = \frac{-1+jz}{\mathrm{i}z}.$$

Ceci est équivalent à : $z + \overline{z} = (j^2 + j) |z|^2$ et en posant z = x + iy, $(x, y) \in \mathbb{R}^2$, on obtient la condition équivalente : $2x = -x^2 - y^2$ soit $(x + 1)^2 + y^2 = 1$.

L'ensemble des points M tels que M_2 , M_3 et M_4 soient alignés est donc le cercle de centre ω d'affixe -1 et de rayon 1 (O y compris, car dans ce cas particulier, M_2 et M_3 sont confondus).

- (b) Ω doit être sur la médiatrice de $[M_2, M_3]$. Le triangle $M_1M_2M_3$ est équilatéral de centre O donc celle-ci est la droite (OM_1) .
- (c) λ est déterminé par le fait que $\Omega M_3 = \Omega M_4$, i.e. $|\rho j e^{-i\theta} \lambda e^{-i\theta}| = |-1 \rho e^{-i\theta} \lambda e^{-i\theta}|$.

Ceci est équivalent à : $\lambda^2 + \rho^2 + \lambda \rho = (\lambda + \rho)^2 + 1 + 2(\lambda + \rho)\cos\theta$

soit à
$$\lambda \rho + 1 + 2(\lambda + \rho) \cos \theta = 0$$
 ou à $\lambda = \frac{-1 - 2\rho \cos \theta}{\rho + 2 \cos \theta}$

(L'ensemble des points tels que $\rho = -2\cos\theta$ est le cercle de centre -1 de rayon 1).

- (d) Ainsi $R = \Omega M_2 = \sqrt{\lambda^2 + \rho^2 + \lambda \rho}$ avec λ ci-dessus.
- (e) $R^2 = 1$ si et seulement si $\lambda^2 + \rho^2 + \lambda \rho = 1$ ce qui est équivalent à

 $(1 + 2\rho\cos\theta)^2 + \rho^2(\rho + 2\cos\theta)^2 - \rho(1 + 2\rho\cos\theta)(\rho + 2\cos\theta) = (\rho + 2\cos\theta)^2$

soit à $1 + 4\rho^2 \cos^2 \theta + 2\rho \cos \theta + \rho^4 + 2\rho^3 \cos \theta - \rho^2 = \rho^2 + 4\cos^2 \theta + 4\rho \cos \theta$

ou à
$$\rho^4 - 2\rho^2 + 1 + 2\rho(\rho^2 - 1)\cos\theta + 4(\rho^2 - 1)\cos^2\theta = 0$$
,

équivalent à : $(\rho^2 - 1)(\rho^2 + 2\rho\cos\theta + 4\cos^2\theta - 1) = 0.$

Comme ρ est positif, ceci est équivalent $\rho = 1$ ou $(\rho + \cos \theta)^2 + 3\cos^2 \theta - 1 = 0$ ce qui donne la relation demandée.

II-4. La condition demandée s'écrit $R = \rho$, équivalent à :

 $1 + 4\rho^{2}\cos^{2}\theta + 2\rho\cos\theta + \rho^{4} + 2\rho^{3}\cos\theta - \rho^{2} = \rho^{4} + 4\rho^{2}\cos^{2}\theta + 4\rho^{3}\cos\theta$

soit à $(1 - \rho^2)(1 + 2\rho \cos \theta) = 0$.

On obtient donc la réunion du cercle de centre O de rayon 1 et de la droite d'équation $x=-\frac{1}{2}$ qui est la droite (BC). Lorsque M est sur la droite, les cercles circonscrits à $M_1M_2M_3$ et $M_2M_3M_4$ sont confondus, de centre O de rayon OM, et lorsque M est sur le cercle trigonométrique, les deux cercles sont symétriques par rapport à (M_2M_3) .

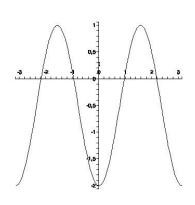
III-1. Par parité, il suffit de faire l'étude sur $[0, \pi]$.

a) s est dérivable sur $[0, \pi]$ et $s'(\theta) = 6\cos\theta\sin\theta = 3\sin(2\theta)$ donc s est croissante sur $\left[0, \frac{\pi}{2}\right]$ et décroissante sur $\left[\frac{\pi}{2}, \pi\right]$ (ce que l'on pourrait voir directement avec les variations de cos).

 $s(\theta)$ s'annule lorsque $\cos\theta$ vaut $-\frac{1}{\sqrt{3}}$ ou $\frac{1}{\sqrt{3}}$, est positif

lorsque $\cos\theta$ est dans $\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$, négatif sinon. Comme cos est continue strictement décroissante sur $I=[0,\pi]$ et puisque $\cos(I)=[-1,1]$ contient $\frac{1}{\sqrt{3}}$, il existe

un unique réel $\alpha \in [0, \pi]$ tel que $\cos \alpha = \frac{1}{\sqrt{3}}$.

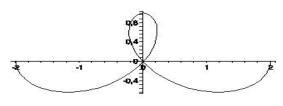


Alors $\cos(\pi - \alpha)$ est l'unique réel de $[0, \pi]$ pour lequel cos prend la valeur $\frac{-1}{\sqrt{3}}$ s est donc négatif sur $[0, \alpha]$ et $[\pi - \alpha, \pi]$, positif sur $E' = [\alpha, \pi - \alpha]$.

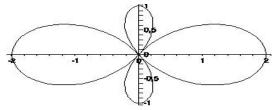
Par parité, on en déduit : $E = [-\pi + \alpha, -\alpha] \cup [\alpha, \pi - \alpha]$ (b) L'étude précédente conduit au tableau de valeurs :

٦.	precedente conduit au tableau de valeurs.													
	θ	0	$\pi/6$	$\pi/4$	α	$\pi/3$	$\pi/2$		$\pi - \alpha$		π			
	$s(\theta)$	-2	-7/2	-1/2	0	1/4	1		0		-2			

La propriété $s(\theta) = s(-\theta)$ assure que la courbe est symétrique par rapport à l'axe des abscisses. La propriété $s(\theta) = s(\pi - \theta)$ assure que la courbe est symétrique par rapport à l'axe des ordonnées.



Tracé sur $[0, \pi]$



Tracé sur $[-\pi, \pi]$

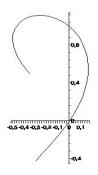
III-2. (a) Par parité, on étudie r_1 sur $[\alpha, \pi - \alpha]$.

 $r_1(\theta)$ est nul si et seulement si $\begin{cases} 1 - 3\cos^2\theta = \cos^2\theta \\ \cos\theta \geqslant 0 \end{cases}$ soit en $\frac{\pi}{3}$.

(b) On obtient le tableau:

θ	α	$\pi/3$	$\pi/2$	$\pi - \alpha$
$r_1(\theta)$	$-1/\sqrt{3}$	0	1	$1/\sqrt{3}$

et $r_1(\theta) = r_1(-\theta)$ assure que la courbe est symétrique par rapport à l'axe des abscisses. Ceci donne le tracé, successivement sur $[\alpha, \pi - \alpha]$ puis sur E:



III-3. Dans la partie II, prendre le point M d'affixe $z = \rho' e^{i\theta'}$ avec $\rho' < 0$ revient à travailler avec $z = \rho e^{i\theta}$ où $\rho = -\rho'$ et $\theta = \pi + \theta'$.

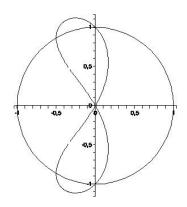
La condition $(\rho + \cos \theta)^2 = 1 - 3\cos^2 \theta$ est alors équivalente à $(\rho' + \cos \theta')^2 = 1 - 3\cos^2 \theta'$. $\rho = 1$ ou $\rho = -1$ est toujours une équation du cercle trigonométrique.

Prendre ρ dans \mathbb{R}^+ ou dans \mathbb{R} ne change donc rien à la partie II, et l'ensemble trouvé en II.3.e est la réunion du cercle de centre O et de rayon 1, de la courbe précédente et de la courbe définie par

$$r_2(\theta) = -\sqrt{1 - 3\cos^2(\theta)} - \cos\theta.$$

Mais comme $r_2(\theta) = -r_1(\pi - \theta)$, les courbes définies par r_1 et r_2 sont symétriques par rapport à l'axe des abscisses.

La courbe définie par r_2 est donc celle définie par r_1 .



Exercice 2

1. La fonction $g: x \mapsto f\left(x + \frac{3}{10}\right) - f(x)$ est continue sur $\left[0, \frac{7}{10}\right]$ et jamais nulle, donc de signe constant sinon elle s'annulerait d'après le théorème des valeurs intermédiaires. Supposons par exemple que :

$$\forall x \in \left[0, \frac{7}{10}\right], f\left(x + \frac{3}{10}\right) - f(x) > 0.$$

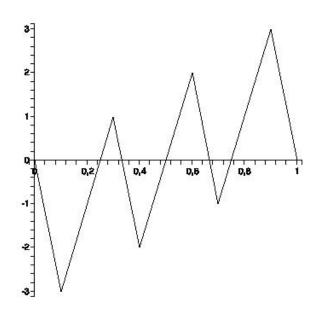
$$\text{Alors}: \begin{cases} 0 = f(0) < f\left(\frac{3}{10}\right) < f\left(\frac{6}{10}\right) < f\left(\frac{9}{10}\right) \\ f\left(\frac{1}{10}\right) < f\left(\frac{4}{10}\right) < f\left(\frac{7}{10}\right) < f(1) = 0 \end{cases}$$

D'après le théorème des valeurs intermédiaires, f s'annule donc sur $\left]\frac{1}{10}, \frac{3}{10}\right[$, sur $\left]\frac{3}{10}, \frac{4}{10}\right[$, sur $\left]\frac{4}{10}, \frac{6}{10}\right[$, sur $\left]\frac{6}{10}, \frac{7}{10}\right[$ et sur $\left]\frac{7}{10}, \frac{9}{10}\right[$. En rajoutant 0 et 1, cela donne au moins 7 annulations.

2. Comme exemple d'une telle fonction, il suffit de prendre l'application continue affine par morceaux définie par :

3

$$\begin{split} f(0) &= 0, \, f\left(\frac{1}{10}\right) = -3, \, f\left(\frac{3}{10}\right) = 1, \, f\left(\frac{4}{10}\right) = -2, \\ f\left(\frac{6}{10}\right) &= 2, \, f\left(\frac{7}{10}\right) = -1, \, f\left(\frac{9}{10}\right) = 3, \, f(1) = 0 \\ \text{qui v\'erifie } f\left(x + \frac{3}{10}\right) - f(x) = 1 \\ \text{pour tout } x \in \left[0, \frac{7}{10}\right]. \end{split}$$



Exercice 3

1. On se place dans un repère orthonormal direct tel que B ait pour coordonnées (0,0), C ait pour coordonnées (0,0), C ait pour coordonnées (0,0), (0,0données (a,0), a>0, et on note θ_1 (resp. θ_2) l'angle de vecteurs $(\overrightarrow{BC}, \overrightarrow{BA_0})$ (resp. $(\overrightarrow{CB}, \overrightarrow{CA_0})$).

Alors A_k est le point tel que : $\left\{ \begin{array}{l} \left(\overrightarrow{BC},\overrightarrow{BA_k}\right) = \theta_1/2^k \\ \left(\overrightarrow{CB},\overrightarrow{CA_k}\right) = \theta_2/2^k \end{array} \right.$

 $\operatorname{donc} A_k \text{ est le point d'intersection des droites d'équations} \begin{cases} y = \tan\left(\frac{\theta_1}{2^k}\right) x \\ y = \tan\left(\frac{\theta_2}{2^k}\right) (x - a) \end{cases}.$ Ainsi, A_k a pour coordonnées : $\begin{cases} x_k = \frac{-\tan\left(\theta_2/2^k\right) a}{\tan\left(\theta_1/2^k\right) - \tan\left(\theta_2/2^k\right)} \xrightarrow{k \to +\infty} \frac{\theta_2 a}{\theta_2 - \theta_1} \\ y_k = \tan\left(\frac{\theta_1}{2^k}\right) x_k \xrightarrow{k \to +\infty} 0 \end{cases}$

ce qui donne le point A, de coordonnées $\left(\frac{\theta_2 a}{\theta_2 - \theta_1}, 0\right)$.

2. Supposons A_1 différent de A_0 .

 A_1 est l'intersection des hauteurs de A_0BC . Par définition, CA_1 est donc orthogonal à BA_0 , ce qui signifie que BA_0 est une hauteur de BCA_1 .

Par ailleurs, A_0BC et A_1BC ont en commun la hauteur A_0A_1 .

 BA_0 et A_0A_1 s'intersectent en A_0 , donc A_0 est l'orthocentre de $A_1BC: A_0 = A_2$.

Finalement, pour tout $k \in \mathbb{N}$: $A_{2k} = A_0$ et $A_{2k+1} = A_1$.

Dans le cas particulier $A_0 = A_1$ (triangle rectangle en A_0), la suite est constante égale à A_0 .

Exercice 4

I-1. 1 ne convient pas.

 $(2^k \mod 7), k \in \mathbb{N}$, vaut alternativement 1, 2 et 4 donc 2 ne convient pas.

 $(3^k \mod 7), k \in \mathbb{N}$, vaut successivement 1, 3, 2, 6, 4, 5 pour $k \in [0, 5]$ donc 3 est une racine primitive modulo 7.

 $(4^k \mod 7), k \in \mathbb{N}, \text{ vaut } 1, 4 \text{ ou } 2 \text{ donc } 4 \text{ ne convient pas.}$

 $(5^k \mod 7), k \in \mathbb{N}$, vaut successivement 1, 5, 4, 6, 2, 3 pour $k \in [0, 5]$ donc 5 est racine primitive modulo 7.

 $(6^k \mod 7), k \in \mathbb{N}$, vaut alternativement 1 et 6 donc 7 ne convient pas.

I-2. (a) Soit $k \ge p - 1$.

En faisant la division euclidienne de k par p-1, il existe $q \in \mathbb{N}$ et $r \in [0, p-2]$ tels que :

$$k = q(p-1) + r.$$

D'après le petit théorème de Fermat : $g^{p-1} = 1 \pmod{p}$ donc $g^k = g^r \pmod{p}$.

Alors: $\{(g^k \mod p) \mid k \in \mathbb{N}\} = \{(g^r \mod p) \mid r \in [0, p-2]\}$ et comme g est racine primitive modulo p, les $(g^i \mod p)$, $i \in [0, p-2]$, décrivent [1, p-1].

On remarque que [1, p-1] contient p-1 éléments, et que lorsque r parcourt [0, p-2], on a p-1valeurs de g^r , donc il existe, pour chaque $A \in [1, p-1]$, exactement un élément $r \in [0, p-2]$ tel que :

$$A = (g^r \bmod p).$$

- (c) Si b est congru à a modulo p-1, il existe k tel que b=a+k(p-1). Comme $g^{p-1} = 1 \pmod{p}$: $(g^b \mod p) = (g^a \mod p) = A$.
- Initialisations : $y \leftarrow 1, i \leftarrow 0$ I-3. (a)

Tant que $y \neq A$ faire

 $-y \leftarrow g * y \pmod{p}$

 $-i \leftarrow i+1$

fin Tant que Renvoyer i

- (b) $\ell(40) = 18$.
- II-1. $54 = 2 \times 3^3$ donc $g^{75} = g^{60}g^{15} = g^{60}\left(g^5\right)^3$ est égal, modulo 113, à 54. Ainsi : $\ell(54) = 75$.
- II-2. Posons $q_j = \ell(p_j)$. Alors $p_j = g^{q_j} \pmod{p}$ donc $g^{a_i} = g^{q_1 e_{i,1} + q_2 e_{i,2} + \dots + q_n e_{i,n}} \pmod{p}$. Deux entiers k et l, avec par exemple k > l, sont tels que $g^k = g^l \pmod{p}$ si et seulement si $g^{k-l} = 1 \pmod{p}$ puique g^l est premier avec p.

Soit r le reste de la division euclidienne de k-l par p-1: g^{k-l} est égal à g^r modulo p, et g^r est égal à 1 si et seulement si r=0 (cf. 2.b) donc g^k et g^l sont égaux modulo p si et seulement si : k=l (modulo (p-1)).

Ainsi : $a_i = e_{i,1}\ell(p_1) + e_{i,2}\ell(p_2) + \dots + e_{i,n}\ell(p_n) \pmod{(p-1)}$.

II-3. (a) $\begin{cases} g = 2^2 \times 5 \pmod{53} \\ g^3 = 2 \times 5^2 \pmod{53} \end{cases} \quad \text{donc} \begin{cases} 2\ell(2) + \ell(5) = 1 \pmod{52} \\ \ell(2) + 2\ell(5) = 3 \pmod{52} \end{cases}$

En soustrayant la deuxième ligne à deux fois la première : $3\ell(2) = -1 \pmod{52}$.

3 est premier avec 52 : il existe $(u, v) \in \mathbb{Z}^2$ tel que 3u + 52v = 1 soit $3u = 1 \pmod{52}$.

On sait déterminer u par l'algorithme d'Euclide et on trouve -17 donc $\ell(2) = 17$.

On en déduit que : $\ell(5) = 1 - 2\ell(2)$ (modulo 52) donc $\ell(5) = 19$.

- (b) $A = 2^3 \times 5 \text{ donc } \ell(40) = 3\ell(2) + \ell(5) \pmod{52} : \ell(40) = 18.$
- (c) Il s'agit de déterminer le nombre de couples $(\alpha, \beta) \in \mathbb{N}^2$ tels que $2^{\alpha}5^{\beta}$ est inférieur à 52.

Pour $\beta = 0$, α peut varier entre 0 et 5 soit 6 couples.

Pour $\beta = 1$: α varie entre 0 et 3 d'où 4 couples.

Pour $\beta = 2$: α vaut 0 ou 1 d'où 2 couples.

Finalement, il y a 12 entiers dans [1,52] qui se factorisent en fonction de 2 et 5.

- II-4. (a) A est inversible modulo p et les $(g^s \mod p)$ décrivent [1, p-1] donc les $(g^s A \mod p)$ aussi; en particulier, il existe (au moins) un entier s tel que $(g^s A \mod p)$ se factorise à l'aide de p_1, \dots, p_n uniquement.
 - (b) Si on a choisi un tel s: il existe des entiers $\alpha_1, \dots, \alpha_n$ tels que $(g^s A \mod p) = p_1^{\alpha_1} \dots p_n^{\alpha_n}$ donc $s + \ell(A) = \alpha_1 \ell(p_1) + \dots + \alpha_n \ell(p_n) \pmod{(p-1)}$ d'où $\ell(A) = \alpha_1 \ell(p_1) + \dots + \alpha_n \ell(p_n) s \pmod{(p-1)}$.
 - (c) Pour A=30, on peut prendre s=3: $(g^s A \bmod 53) = 2^4 \bmod s + \ell(A) = 4\ell(2) \pmod 52.$ Finalement : $\ell(30)=13$.

II-5. (a) Les puissances de p_1 dans [1, p-1] sont $1, p_1, \dots, p_1^{k_1}$ où $k_1 = E\left(\frac{\ln(p-1)}{\ln p_1}\right)$.

Il y en a donc $E\left(\frac{\ln{(p-1)}}{\ln{p_1}}\right) + 1.$

(b) Lorsque s décrit [0, p-2], $g^s A \pmod{p}$ décrit (exactement une fois) [1, p-1]. La probabilité demandée est le nombre d'entiers qui conviennent divisé par le nombre p-1 de cas soit $\frac{1}{p-1}\left(\mathrm{E}\left(\frac{\ln{(p-1)}}{\ln{p_1}}\right)+1\right)$.

Elle est supérieure à $\frac{\ln (p-1)}{(p-1) \ln p_1}$.

(c) Pour i fixé, le nombre d'entiers de la forme $p_1^i p_2^j$ est le nombre d'entiers j tels que $p_2^j \leqslant \frac{p-1}{p_1^i}$,

soit le nombre d'entiers de $\left[0, \operatorname{E}\left(\frac{\ln\frac{(p-1)}{p_1^i}}{\ln p_2}\right)\right]$, qui est supérieur à $\frac{\ln\frac{(p-1)}{p_1^i}}{\ln p_2}$, donc le nombre

d'entiers qui se factorisent en fonction de p_1 et p_2 est supérieur à

$$S = \frac{1}{\ln p_2} \sum_{i=0}^{k_1} \ln \frac{p-1}{p_1^i} \text{ où } k_1 = \operatorname{E}\left(\frac{\ln (p-1)}{\ln p_1}\right).$$

$$\operatorname{Or} S = \frac{1}{\ln p_2} \ln \frac{(p-1)^{k_1+1}}{p_1^{k_1(k_1+1)/2}} \geqslant \frac{\ln \left[(p-1)^{(k_1+1)/2}\right]}{\ln p_2} = \frac{(k_1+1)\ln (p-1)}{2\ln p_2} \geqslant \frac{(\ln (p-1))^2}{2(\ln p_1)(\ln p_2)}.$$

$$\operatorname{Ainsi} : P \geqslant \frac{S}{p-1} \geqslant \frac{(\ln (p-1))^2}{2(p-1)(\ln p_1)(\ln p_2)}.$$

Majoration : il suffit de majorer le nombre d'entiers q de [1, p-1] qui s'écrivent sous la forme $p_1^{\alpha}p_2^{\beta}$ avec $(\alpha, \beta) \in \mathbb{N}^2$.

Dans ce cas :
$$\ln q = \alpha \ln p_1 + \beta \ln p_2 \leqslant \ln (p-1)$$
 donc
$$\begin{cases} 0 \leqslant \alpha \leqslant \frac{\ln (p-1)}{\ln p_1} \\ 0 \leqslant \beta \leqslant \frac{\ln (p-1)}{\ln p_2} \end{cases}.$$
Il y a donc au plus $\left(E\left(\frac{\ln (p-1)}{\ln p_1}\right) + 1\right) \left(E\left(\frac{\ln (p-1)}{\ln p_2}\right) + 1\right) \leqslant \left(\frac{\ln (p-1)}{\ln p_1} + 1\right) \left(\frac{\ln (p-1)}{\ln p_2} + 1\right)$ choix pour le couple (α, β) , d'où le résultat.

(d) On généralise le travail fait précédemment.

Majoration : comme ci-dessus, la probabilité recherchée est majorée par $\frac{1}{p-1}\prod_{k=1}^{n}\left(\frac{\ln{(p-1)}}{\ln{p_k}}+1\right)$.

Minoration.

Montrons par récurrence sur n que, pour tout réel $x \ge 1$, le nombre d'entiers de [1, x] qui se décomposent à l'aide de p_1, \ldots, p_n uniquement est supérieur à $\frac{(\ln x)^n}{n!(\ln p_1)\cdots(\ln p_n)}$.

On l'a vu ci-dessus pour n=1 et n=2 (le fait que x était de la forme p-1 avec p premier n'intervenait pas).

Supposons le résultat vrai pour n-1 nombres premiers et passons à n.

Pour i_1 fixé, le nombre d'entiers inférieurs à x de la forme $p_1^{i_1}\left(p_2^{i_2}\cdots p_n^{i_n}\right)$ est le nombre d'entiers

de la forme
$$p_2^{i_2}\cdots p_n^{i_n}$$
 inférieurs à $\frac{x}{p_1^{i_1}}$, donc est supérieur à $\frac{\left(\ln\left[x/p_1^{i_1}\right]\right)^{n-1}}{(n-1)!(\ln p_2)\cdots(\ln p_n)}$

Le nombre d'entiers recherché dans [1,x] est donc supérieur à $T = \sum_{i=0}^{k_1} \frac{\left(\ln\left\lfloor x/p_1^i\right\rfloor\right)^{n-1}}{(n-1)!(\ln p_2)\cdots(\ln p_n)}$

avec
$$k_1 = \mathbb{E}\left(\frac{\ln x}{\ln p_1}\right)$$
.

Soit
$$S = \sum_{i=0}^{k_1} \left(\ln \frac{x}{p_i^i} \right)^{n-1}$$
.

On remarque que, pour $i \le k_1 - 1$: $\forall t \in [\ln x - (i+1) \ln p_1, \ln x - i \ln p_1], t^{n-1} \le \left(\ln \frac{x}{n!}\right)^{n-1}$

$$\operatorname{donc} \, S \geqslant \left(\ln \frac{x}{p_1^{k_1}}\right)^{n-1} + \frac{1}{\ln p_1} \int_{\ln x - k_1 \ln p_1}^{\ln x} t^{n-1} \, \, \mathrm{d} \, t \geqslant \frac{1}{\ln p_1} \int_0^{\ln x} t^{n-1} \, \, \mathrm{d} \, t = \frac{(\ln x)^n}{n \ln p_1}$$

d'où $T \geqslant \frac{(\ln x)^n}{n!(\ln p_1)\cdots(\ln p_n)}$ et on a l'hérédité.

Finalement, la probabilité pour qu'un entier de [1, p-1] se décompose en fonction de p_1, \dots, p_n uniquement est supérieure à $\frac{(\ln (p-1))^n}{n!(p-1)(\ln p_1)\cdots(\ln p_n)}$.