ACTIVITES NUMERIQUES

(**12 points**)

4 points seront attribués pour le soin, les notations, la rédaction et l'orthographe. L'utilisation de la calculatrice est autorisée.

Exercice 1: (3 points)

On donne:

$$A = -\frac{1}{3} + \frac{14}{3} : \frac{35}{12}$$

 $A = -\frac{1}{3} + \frac{14}{3} : \frac{35}{12} \qquad \text{et} \qquad B = \frac{81 \times 10^{-5} \times 14 \times \left(10^{2}\right)^{3}}{7 \times 10^{4}}$

- a) Calculer le nombre A. Écrire les étapes et donner le résultat sous forme de fraction irréductible.
- b) Calculer le nombre B. Écrire les étapes ; le résultat sera donné sous forme décimale, puis sous forme scientifique.

Exercice 2: (3 points)

a) Résoudre les équations suivantes : (3x-1)-(5x+3)=0

$$(3x-1)-(5x+3)=0$$

$$(3x-1)(5x+3)=0$$

b) Résoudre l'inéquation

$$2y - 5 < 4y + 3$$

2y-5 < 4y+3 et représenter les solutions sur une droite graduée.

Exercice 3: (3 points)

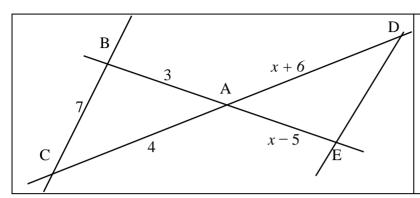
Écrire sur votre copie la bonne réponse pour chaque question. Aucune justification n'est demandée.

N°	Question	Réponse A	Réponse B	Réponse C
1	$9^{145} \times 9^{-66}$ est égal à	9 ⁻⁷⁹	81 ⁷⁹	9^{79}
2		<i>x</i> >-2	<i>x</i> ≥ -2	<i>x</i> ≤ -2
3	Si un nombre y est tel que $y \le -1$, alors:	$5y \ge 4$	-2 <i>y</i> ≤ 2	-3 <i>y</i> ≥ 3
4	L'équation $7x(-2x + 4) = 0$ a pour solutions :	2 et (-7)	0 et 2	(-2) et 0
5	Les solutions de l'inéquation $4x + 1 > 7x - 5$ sont :	tous les nombres inférieurs à 2	tous les nombres supérieurs à 2	tous les nombres inférieurs à (-2)
6	$\frac{3-\frac{5}{2}}{\frac{2}{7}-\frac{7}{2}} \text{ est \'egal \'a}$	-0,15555555555	$-\frac{7}{45}$	-0,16

Exercice 4: (3 points)

Un confiseur a un lot de 3 150 bonbons et 1 350 sucettes. Il veut réaliser des paquets contenant tous le même nombre de bonbons et le même nombre de sucettes, et en utilisant tout.

- a) Calculer PGCD(1 350; 3 150).
- b) Quel est le nombre maximum de paquets qu'il pourra réaliser ?
- c) Chaque bonbon est vendu 5 centimes d'euro et chaque sucette 30 centimes d'euro. Quel sera le prix d'un paquet ?


Collège (Déc	cembre 2009	
Durée : 2 heures	Brevet blanc de mathématiq	ues n°1	Feuille 1 / 3

ACTIVITES GEOMETRIQUES

(**12 points**)

Exercice 1:

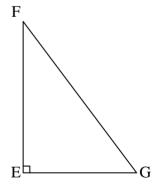
(3 points)

On ne demande pas de refaire la figure.

Trouver la valeur de x pour que les droites (BC) et (DE) soient parallèles.

Exercice 2:

(5 points)


Tracer un triangle ABC tel que AB = 6 cm, AC = 4.8 cm et BC = 8.4 cm. Sur la demi-droite d'origine B contenant A, placer le point E tel que BE = 11 cm. Sur la demi-droite d'origine C contenant A, placer le point F tel que CF = 8.8 cm.

- 1) Faire une figure aux mesures exactes, puis calculer AE et AF.
- 2) Prouver que (EF) et (BC) sont parallèles.
- 3) Calculer la longueur du segment [EF].

Exercice 3:

(4 points)

- a) EFG est un triangle rectangle en E tel que EG = 5 cm et $\widehat{EGF} = 36^{\circ}$. Calculer FG (valeur arrondie au millimètre).
- b) Calculer la mesure de \widehat{KVL} (valeur arrondie au degré). En déduire la mesure de \widehat{LKV} .

	L			
	11 dm/			
				K
V		15 dn	1	

Collège (Déc	cembre 2009	
Durée : 2 heures	Brevet blanc de mathématiq	ues n°1	Feuille 2 / 3

Problème

(**12 points**)

On fera une figure complète en vraie grandeur au crayon à papier (laisser les traits de construction).

Construire un cercle (O) de centre O et de diamètre [AB] tel que AB = 8,5 cm.

Soit C un point de ce cercle tel que AC= 7,5 cm.

- 1) Calculer BC en justifiant le calcul.
- 2) Calculer CAB. On donnera la valeur approchée arrondie au degré.
- 3) Soit I le milieu de [AC], montrer que (OI) est la médiatrice du segment [AC].
- 4) Dans le demi-plan de frontière (AB) ne contenant pas C, (« de l'autre côté du diamètre [AB] ») construire le point D tel que AD = 5,1 cm et BD = 6,8 cm.

 Quelle est la nature du triangle ABD ? Justifier la réponse.
- 5) Montrer que les points A, B, C et D appartiennent à un même cercle.
- 6) Soit E le symétrique de C par rapport à O. Quelle est la nature du quadrilatère ACBE ? Justifier.

Collège (Décembre 2009		
Durée : 2 heures	Brevet blanc de mathématiques n		Feuille 3 / 3