ACTIVITES NUMERIQUES

(**12 points**)

4 points seront attribués pour la rédaction, le soin, les notations et l'orthographe. L'utilisation de la calculatrice est autorisée.

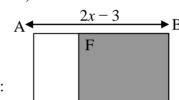
Exercice 1: (2 points)

On donne le programme de calcul suivant :

- a) Calculer la valeur exacte du résultat obtenu lorsque :
 - le nombre choisi est 1,2;
 - le nombre choisi est x.

Choisir un nombre ; multiplier ce nombre par 4 ; ajouter 6 ; écrire le résultat.

b) Quel nombre doit-on choisir pour que le résultat obtenu soit égal à 15 ? Justifier.


Exercice 2: (2,5 points)

Soit **P** le nombre défini par **P** = $4\sqrt{12} + 3\sqrt{27} - 5\sqrt{75}$.

Donner une écriture simplifiée (sous la forme $a\sqrt{b}$) de ce nombre \boldsymbol{P} ; on écrira les étapes intermédiaires.

Exercice 3: (5 points)

Dans cet exercice, x désigne un nombre supérieur ou égal à 4. ABCD est un carré dont le côté mesure 2x - 3.

C

a. Montrer que l'aire du rectangle BCEF s'exprime par la formule :

$$\mathbf{A} = (2x-3)^2 - (2x-3)(x+1)$$

- b. Développer et réduire A.
- c. Factoriser A.
- d. Résoudre l'équation (2x-3)(x-4) = 0.

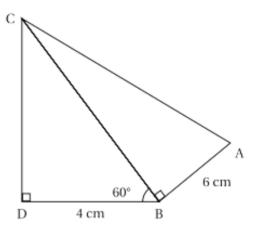
Exercice 4: (2,5 points)

Pour chaque ligne du tableau, quatre réponses sont proposées, mais une seule est exacte. Aucun point ne sera enlevé en cas de mauvaise réponse.

Indiquer <u>sur votre copie</u>, le numéro de la question et, sans justifier, <u>recopier</u> la réponse exacte.

1.	Quelle est l'expression développée de $2x(2x-3)$?	$2x^2 - 6x$	$4x^2 - 3$	$4x^2 - 6x$	$-2x^2$
2.	Quelle est l'expression factorisée de $x^2 - 100$?	$(x-10)^2$	(x-10)(x+10)	$(x-50)^2$	(x-50)(x+50)
3.	Quelles sont les solutions de $(x-4)(2x+7) = 0$?	4 et $-\frac{7}{2}$	4 et $\frac{7}{2}$	4 et - $\frac{2}{7}$	-4 et $\frac{2}{7}$
4.	Quelle est la valeur exacte de $\sqrt{4+16}$?	10	6	$2\sqrt{5}$	4,47
5.	Le prix d'un article coûtant 1 200 € baisse de 5 % ; quel est son nouveau prix ?	60 €	1 260 €	1 195 €	1 140 €

Collège (mai 2011		
Durée : 2 heures	Brevet blanc de mathématiq	ues n°2	Feuille 1 / 4

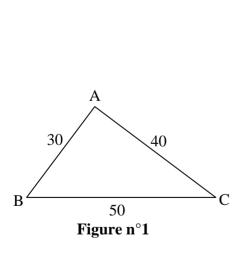

Exercice 1:

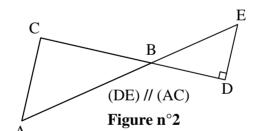
(6 points)

On donne BD = 4 cm, BA = 6 cm et \widehat{DBC} = 60°. Aucune construction n'est demandée.

- 1) Montrer que BC = 8 cm.
- 2) Calculer CD. Donner la valeur exacte simplifiée, puis la valeur arrondie au dixième.
- 3) Calculer AC en justifiant.
- 4) Quelle est la valeur de \widehat{tanBAC} ?

 En déduire la mesure de \widehat{BAC} arrondie au degré près.




Exercice 2:

(6 points)

Démontrer, pour chacune des trois figures ci-dessous, que le triangle ABC est un triangle rectangle en utilisant les informations fournies.

Toutes les étapes et réponses devront être rédigées avec la plus grande précision.

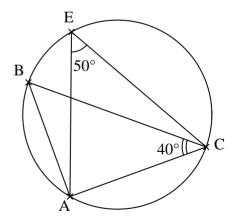
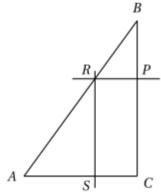


Figure n°3

Collège (mai 2011			
Durée : 2 heures	Brevet blanc de mathématiques n°2		Feuille 2 / 4	

Problème


(**12 points**)

Dans tout ce problème, aucune construction n'est demandée!

ABC est un triangle tel que : AB = 17.5 cm BC = 14 cm et AC = 10.5 cm.

Partie 1:

- 1. Démontrer que le triangle ABC est rectangle en C.
- Soit P un point appartenant au segment [BC].
 La parallèle à la droite (AC) passant par P coupe le segment [AB] en R.
 La parallèle à la droite (BC) passant par R coupe le segment [AC] en S.
 Montrer que le quadrilatère PRSC est un rectangle.

La figure n'est pas en vraie grandeur

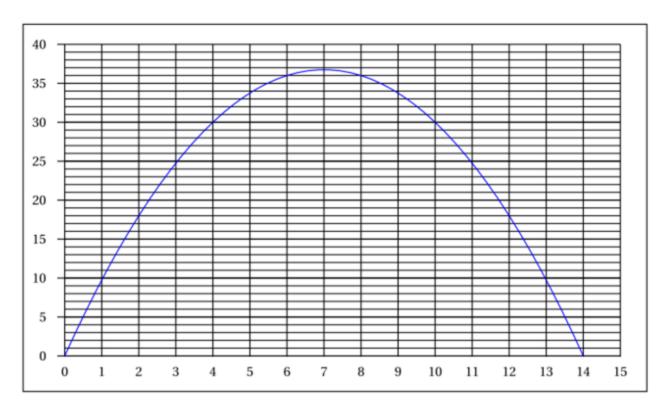
- 3. Dans cette question, on suppose que le point P est situé à 5 cm du point B.
 - a) Calculer la longueur PR.
 - b) Calculer l'aire du rectangle PRSC.

Partie 2:

On déplace le point P sur le segment [BC] et on souhaite savoir quelle est la position du point P pour laquelle l'aire du rectangle *PRSC* est maximale.

1. L'utilisation d'un tableur a donné le tableau de valeurs suivant :

Longueur BP en cm	0	1	3	5	8	10	12	14
Aire de <i>PRSC</i> en cm ²	0	9,75	24,75		36		18	0


Indiquer sur la copie les deux valeurs manquantes du tableau.

Justifier, par un calcul, la valeur trouvée pour BP = 10 cm.

Collège (mai 2011		
Durée : 2 heures	Brevet blanc de mathématiques n°2		Feuille 3 / 4

2. Un logiciel a permis d'obtenir la représentation graphique suivante :

Aire du rectangle PRSC en fonction de la longueur BP

A l'aide d'une lecture graphique, donner :

- a) les valeurs de BP pour lesquelles le rectangle PRSC a une aire de 18 cm².
- b) La valeur de *BP* pour laquelle l'aire du triangle semble maximale.
- c) Un encadrement à 1 cm² près de l'aire maximale du rectangle PRSC.

Partie 3:

- 1. Exprimer PC en fonction de BP.
- 2. Démontrer que PR est égale à $0.75 \times BP$.
- 3. Pour quelle valeur de *BP* le rectangle *PRSC* est-il un carré ?

Collège (mai 2011		
Durée : 2 heures	Brevet blanc de mathématic	ues n°2	Feuille 4 / 4