CORRECTION DU BREVET BLANC DU 17 MAI 2000

ACTIVITES NUMERIQUES

Exercice n° 1:

$$A = \frac{7}{9} - \frac{1}{9} \times \frac{3}{2} = \frac{7}{9} - \frac{3}{18} = \frac{14}{18} - \frac{3}{18} = \frac{11}{18} \quad \begin{vmatrix} B = (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{3}\sqrt{2} + 2 \\ = 5 - 2\sqrt{6} \end{vmatrix} = \frac{7}{18} - \frac{7}{18} - \frac{14}{18} - \frac{3}{18} = \frac{11}{18} - \frac{3}{18} = \frac{11}{18} = \frac{11}{18} - \frac{3}{18} = \frac{11}{18} - \frac{3}{18} = \frac{11}{18} = \frac{11}{18} - \frac{3}{18} = \frac{11}{18} = \frac{11}{18} - \frac{3}{18} = \frac{11}{18} - \frac{3}{18$$

Exercice n° 2:

$$D = (2x-1)^2 - 4$$

$$= 4x^2 - 4x + 1 - 4$$

$$= 4x^2 - 4x - 3$$

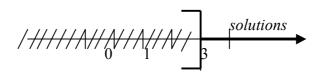
b)
$$D = (2x-1)^2 - 2^2$$

$$= (2x-1-2)(2x-1+2)$$

$$= (2x-3)(2x+1)$$

(2x-3)(2x+1) = 0Un produit de facteurs est nul lorsque l'un au moins des facteurs est nul 2x - 3 = 0 ou 2x + 1 = 0

Pour
$$x = \frac{1}{2}$$
; $D = 4 \times \left(\frac{1}{2}\right)^2 - 4 \times \frac{1}{2} - 3 = 4 \times \frac{1}{4} - 4 \times \frac{1}{2} - 3 = 1 - 2 - 3 = -4$


Pour $x = 0$; $D = -3$
 $x = \frac{3}{2}$ ou $x = -\frac{1}{2}$

Les solutions de l'équation

$$x = \frac{3}{2}$$
 ou $x = -\frac{1}{2}$
Les solutions de l'équation sont 1,5 et -0.5 .

Exercice n° 3:

$$5 - 2x < x - 4$$
$$-3x < -9$$
$$x > 3$$

Exercice n° 4:

- prix. Soit $3520 \times 0.75 = 2640$ F.
- a) Si on consent une remise de 25%, on paie 75% du b) On a donc payé 75% du prix. Soit x le prix initial, 0.75 x = 3150 Soit x = 3150 : 0.75 = 4200. Ce prixétait donc de 4200 F.

ACTIVITES GEOMETRIQUES

Exercice n° 1:

b)
$$\overrightarrow{MA} = \overrightarrow{CB}$$

- c) CA + CB = CK donc CAKB est un parallélogramme, donc CB = AK.
- **d)** $\overrightarrow{CB} = \overrightarrow{AK}$ et $\overrightarrow{CB} = \overrightarrow{MA}$ donc $\overrightarrow{MA} = \overrightarrow{AK}$. Donc A est le milieu de [MK].

Exercice n° 3:

- a) Dans le triangle LMN, rectangle en A, on a b) Dans le triangle MLH, rectangle en H, on a a) Dalis it triangle Livity, rectangle on 13, on $\frac{9}{100} = \frac{100}{100} = \frac{100}{10$

PROBLEME

1)
$$AB^2 + AC^2 = 42^2 + 56^2 = 1764 + 3136 = 4900$$

 $BC^2 = 70^2 = 4900$.

Donc $BC^2 = AB^2 + AC^2$, donc d'après la réciproque du théorème de Pythagore, ABC est rectangle en A.

3) AHMK est un quadrilatère qui a trois angles droits donc c'est un rectangle.

Première partie

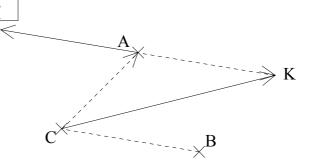
a) M est un point de (BC) distinct de B et H est un point de (BA) distinct de A. De plus, comme HMKA est un rectangle, (HM) // (CA). Donc, d'après le théorème de Thalès, $\frac{BH}{BA} = \frac{BM}{BC} = \frac{HM}{AC}$

• Considérons
$$\frac{BH}{BA} = \frac{BM}{BC}$$
 soit $\frac{BH}{42} = \frac{14}{70}$
70 BH = 14 x 42 d'où BH = $\frac{14 \times 42}{70}$ = 8,4 mm.

• Considérons
$$\frac{BH}{BA} = \frac{BM}{BC}$$
 soit $\frac{BH}{42} = \frac{14}{70}$
• Considérons $\frac{BM}{BC} = \frac{HM}{AC}$ soit $\frac{14}{70} = \frac{HM}{56}$
70 BH = 14 x 42 d'où BH = $\frac{14 \times 42}{70} = 8,4$ mm.

- **b)** $H \in [AB]$ donc HA = BA BH = 42 8.4 = 33.6 mm.
- **2-** \mathcal{F}_{AHMK} = 2(AH + HM) = 2(33,6 + 11,2) = 2 x 44,8 = 89,6 mm.

Deuxième partie


1- a) b)
En utilisant ce qui a été fait à la 1^{ère} partie, on peut | En utilisant ce qui a été fait à la 1^{ère} partie, on peut écrire que $\frac{BM}{BC} = \frac{HM}{AC}$ soit $\frac{x}{70} = \frac{HM}{56}$ écrire que $\frac{BM}{BC} = \frac{BH}{BA}$ soit $\frac{x}{70} = \frac{BH}{42}$ d'où 70 HM = 56 x soit HM = $\frac{56x}{70} = 0.8x$. écrire que $\frac{BM}{RC} = \frac{HM}{AC}$ soit $\frac{x}{70} = \frac{HM}{56}$

On a vu à la première partie que HA = BA - BH donc ici, HA = 42 - 0.6

- a) $\mathcal{F}_{AHMK} = 2(AH + HM) = 2(42 0.6x + 0.8x) = 2(42 + 0.2x) = 84 + 0.4x$.
 - **b)** On veut que HM = AH soit 0.8x = 42 0.6x d'où 1.4x = 42 et $x = \frac{42}{1.4} = 30$.
 - c) AHMK est un rectangle tel que HM = AH donc AHMK est un carré. Et $\boldsymbol{\mathcal{F}}_{AHMK}$ = 84 + 0,4x30 = 96mm

<u>COLLEGE DE CHANTACO - BREVET BLANC - EPREUVE DE MATHEMATIQUES</u> <u>FEUILLE DE CONSTRUCTIONS</u>

Figure 1 - Activité géométrique exercice 1 :

Classe:

Figure 2- Activité géométrique exercice 2 :

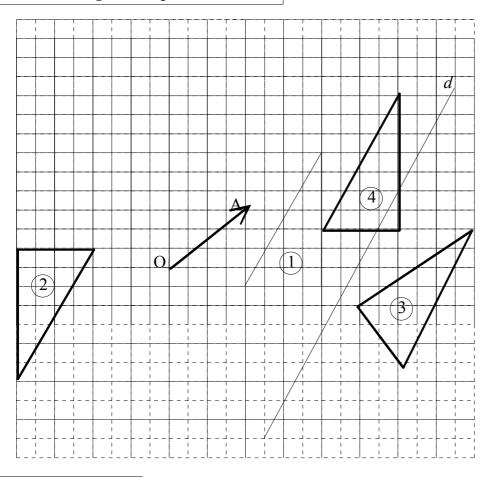
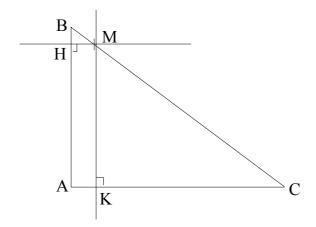



Figure 3 - Problème :

