Il sera tenu compte de la qualité de la rédaction et de la présentation (4 points). L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur.

Première partie: activités numériques (12 points)

Exercice 1

Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Aucune justification n'est demandée. Une réponse correcte rapporte 1 point. L'absence de réponse ou une réponse fausse ne retire aucun point.

Indiquer sur la copie, le numéro de la question et la réponse.

		Réponse A	Réponse B	Réponse C
1.	Quelle est la forme factorisée de $(x + 1)^2 - 9$?	(x-2)(x+4)	$x^2 + 2x - 8$	(x-8)(x+10)
2.	Que vaut $5^n \times 5^m$?	5 ^{n m}	5^{n+m}	25^{n+m}
3.	À quelle autre expression le nombre $\frac{7}{3} - \frac{4}{3} \div \frac{5}{2}$ est-il égal ?	$\frac{3}{3} \div \frac{5}{2}$	$\frac{7}{3} - \frac{3}{4} \times \frac{2}{5}$	27 15
4.	Quel nombre est en écriture scientifique ?	$17,3 \times 10^{-3}$	0.97×10^{7}	$1,52 \times 10^3$

Exercice 2

- 1. Calculer le PGCD de 1 755 et 1 053. Justifier votre réponse.
- 2. Écrire la fraction $\frac{1053}{1755}$ sous la forme irréductible.
- 3. Un collectionneur de coquillages (un conchyliologue) possède 1 755 cônes et 1 053 porcelaines.

Il souhaite vendre toute sa collection en réalisant des lots identiques, c'est-à-dire comportant le même nombre de coquillages et la même répartition de cônes et de porcelaines.

- a. Quel est le nombre maximum de lots qu'il pourra réaliser ?
- b. Combien y aura-t-il, dans ce cas, de cônes et de porcelaines par lot ?

Exercice 3

On écrit sur les faces d'un dé équilibré à six faces, chacune des lettres du mot : **N O T O U S**. On lance le dé et on regarde la lettre inscrite sur la face supérieure.

- 1. Quelles sont les issues de cette expérience ?
- 2. Déterminer la probabilité de chacun des événements :
- a. E_1 : « On obtient la lettre O ».
- b. On appelle E₂ l'événement contraire de E₁. Décrire E₂ et calculer sa probabilité.
- c. E₃: « On obtient une consonne ».
- d. E₄: « On obtient une lettre du mot K I W I ».
- e. E₅ : « On obtient une lettre du mot C A G O U S ».

COLLEGE MAX BRAMERIE DE LA FORCE				
Temps alloué : 2h	Coefficient: 2	Brevet Blanc n°1		
Épreuve : mathématiques		Date : jeudi 16 février 2012		
Ce sujet comporte : 4 pages		Série collège : 1/4		

DEUXIÈME PARTIE: ACTIVITÉS GÉOMÉTRIQUES (12 points)

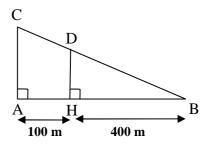
Exercice 1

- 1. Tracer un segment [AB] de longueur 6,5 cm, puis le cercle de diamètre [AB]. Placer sur ce cercle un point C tel que AC = 3,9 cm. Démontrer que le triangle ABC est rectangle en C
- 2. Montrer que BC = 5.2 cm.
- 3. Placer le point D est tel que : AD = 2,5 cm et BD = 6 cm. Le triangle ABD est-il rectangle ?

Exercice 2

Un cycliste se trouve sur un chemin [CB]. On donne AH = 100 m, HB = 400 m et $\widehat{ABC} = 10^{\circ}$.

- 1. Calculer la mesure du côté [AB].
- 2. Calculer le dénivelé AC arrondi au mètre.
- 3. Calculer la longueur BC arrondie au mètre.
- 4. Le cycliste est arrêté au point D sur le chemin. Calculer la distance DB arrondie au mètre qu'il lui reste à parcourir.



Exercice 3

La figure n'est pas en vraie grandeur et n'est pas à reproduire.

$$AC = 3 \text{ cm}$$

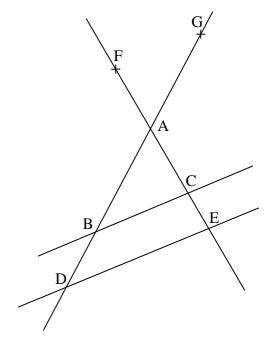
$$AE = 4.5 \text{ cm}$$

$$AB = 4 \text{ cm}$$

Les droites (BC) et (DE) sont parallèles.

- 1. Calculer la longueur AD.
- 2. On donne : AF = 4,05 cm et AG = 5,4 cm

Montrer que les droites (FG) et (BC) sont parallèles.



Ce sujet comporte : 4 pages

Série collège : 2/4

TROISIÈME PARTIE: QUESTIONS ENCHAÎNÉES (12 points)

Le directeur d'un théâtre sait qu'il reçoit 500 spectateurs quand le prix d'une place est de 20 €.

Il a constaté que pour <u>chaque réduction de 1 €</u> du prix d'une place, il y a <u>50 spectateurs de plus</u>.

Toutes les parties sont indépendantes.

Partie 1

- 1. Compléter le tableau 1 de l'Annexe 1.
- 2. On appelle x le montant de la réduction (en \in). Compléter le tableau 2 de l'annexe 1.
- 3. Développer l'expression de la recette obtenue à la question 2.

Partie 2

Le directeur de la salle souhaite déterminer le prix d'une place lui assurant la meilleure recette. Il utilise la fonction R donnant la recette (en \in) en fonction du montantx de la réduction (en \in). Sa courbe représentative est donnée en annexe 2.

Par lecture graphique, répondre aux questions ci-dessous (on attend des valeurs approchées avec la précision permise par le graphique et on fera apparaître sur le graphique les tracés nécessaires à la lecture) :

- 1. Quelle est la recette pour une réduction de $2 \in ?$
- 2. Quel est le montant de la réduction d'une recette de 4 050 € ? Quel est alors le prix d'une place ?
- 3. Quelle est l'image de 14 par la fonction R? Interpréter ce résultat pour le problème.
- 4. Quelle est la recette maximale ? Quel est alors le prix de la place ?

Partie 3

Dans cette question, toute trace de recherche, même incomplète, sera prise en compte dans l'évaluation.

La salle de spectacle a la forme ci-contre :

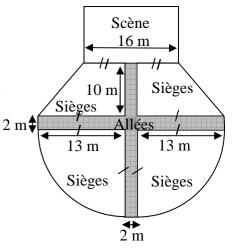
Les sièges sont disposés dans quatre zones : deux quarts de disques et deux trapèzes, séparées par des allées ayant une largeur de 2 m. On peut placer en moyenne 1,8 siège par m² dans la zone des sièges.

Calculer le nombre de places disponibles dans ce théâtre.

$$\mathcal{A}(\text{trapèze}) = \frac{(B+b) \times h}{2}$$

$$et \mathcal{A}(\text{disque}) = \pi r^2$$

$$r$$



Série collège: 3/4

Ce sujet comporte : 4 pages

Document à rendre complété avec la copie

Nom: Prénom:

ANNEXE 1

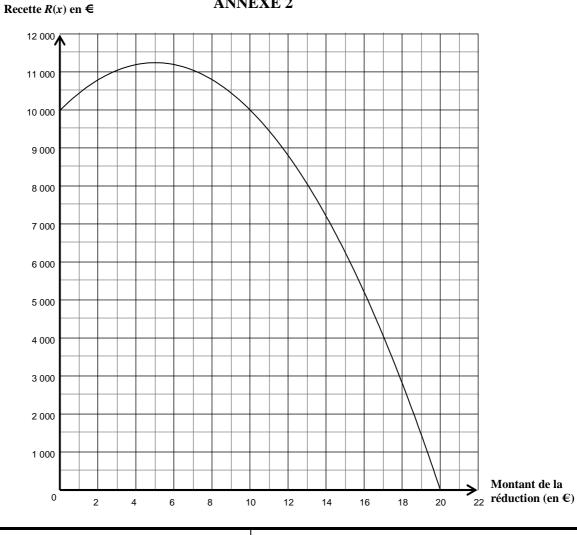
Tableau 1

Réduction en €	Prix de la place en €	Nombre de spetateurs	Recette du spectacle
0	20	500	$20 \times 500 = 10\ 000$
1	20 - 1 = 19	$500 + 1 \times 50 = 550$	×=
2	20 – =	500 +	×=
6	=	+ =	×=
	= 10	+ =	×=

Tableau 2

Réduction en €	Prix de la place en €	Nombre de spetateurs	Recette du spectacle
X			×

ANNEXE 2



Ce sujet comporte : 4 pages Série collège: 4/4

Solution

PREMIÈRE PARTIE: ACTIVITÉS NUMÉRIQUES (12 points)

Exercice 1 (4 points)

1. $(x+1)^2 - 9 = (x+1)^2 - 3^2 = [(x+1)+3][(x+1)-3] = (x+1+3)(x+1-3) = (x+4)(x-2)$.

Donc il faut choisir la réponse A.

2. $5^n \times 5^m = 5^{n+m}$; donc il faut choisir la réponse B.

3.
$$\frac{7}{3} - \frac{4}{3} \div \frac{5}{2} = \frac{7}{3} - \frac{4}{3} \times \frac{2}{5} = \frac{7 \times 5}{3 \times 5} - \frac{4 \times 2}{3 \times 5} = \frac{35 - 8}{15} = \frac{27}{15}$$
; donc il faut choisir la réponse C.

4. $1,52 \times 10^3$ est en écriture scientifique ; donc il faut choisir la réponse C.

Exercice 2 (4 points)

1. En utilisant l'algorithme d'Euclide :

$$1755 = 1053 \times 1 + 702$$
$$1053 = 702 \times 1 + 351$$

$$702 = 351 \times 2 + 0$$

Donc PGCD (1755; 1053) = 351.

$$2. \frac{1\ 053}{1\ 755} = \frac{351 \times 3}{351 \times 5} = \frac{3}{5}$$

 $\frac{3}{5}$ est irréductible.

3. a. Le nombre maximal de lots qu'il pourra réaliser est le plus grand diviseur commun de 1 755 et 1 053 donc 351.

3. b. $1.053 \div 351 = 3$

et $1.755 \div 351 = 5$ donc chaque lot comportera 3 porcelaines et 5 cônes.

Exercice 3 (4 points)

1. Les \underline{cinq} issues de cette expérience sont : « Obtenir N » ; « Obtenir O » ; « Obtenir T » ; « Obtenir U » et « Obtenir S ».

2. $p(E_1) = \frac{2}{6} = \frac{1}{3}$ (2 lettres O parmi 6 lettres); l'événement E_2 est « ne pas obtenir O »; $p(E_2) = \frac{3}{3} - \frac{1}{3} = \frac{2}{3}$;

 $p(E_3) = \frac{3}{6}$ (3 consonnes parmi 6 lettres); $p(E_4) = \frac{0}{6} = 0$ (pas de K, ni de I ni de W parmi 6 lettres)

 $p(E_5) = \frac{4}{6} = \frac{2}{3}$ (4 lettres O, O, U et S parmi 6 lettres).

DEUXIÈME PARTIE: ACTIVITÉS GÉOMÉTRIQUES (12 points)

Exercice 1 (5 points)

1/ Le segment [AB] mesurant 6,5 cm est tracé ci-contre avec le cercle de diamètre [AB] et le point C situé sur ce cercle à 3,9 cm de A

Puisque le triangle ABC est inscrit sur le cercle de diamètre [AB], alors il est rectangle en C.

2/ Puisque le triangle ABC est rectangle en C, alors on peut utiliser l'égalité de Pythagore :

$$AB^2 = AC^2 + BC^2$$
 donc $6.5^2 = 3.9^2 + BC^2$.

$$42,25 = 15,21 + BC^2$$
 donc $BC^2 = 42,25 - 15,21$

$$BC^2 = 27,04$$
 et $BC = \sqrt{27,04} = 5,2$; ainsi $BC = 5,2$ cm.

3/ Le <u>plus grand côté</u> du triangle ABD est [AB] avec $AB^2 = 42,25$;

$$BD^2 + AD^2 = 6^2 + 25^2 = 36 + 625 = 4225.$$

Ainsi $AB^2 = BD^2 + AD^2$ donc l'égalité de Pythagore est vérifiée et le triangle ABD est rectangle en D.

Exercice 2 (4 points)

$$1/AB = AH + HA = 400 + 100 = 500$$
; $AB = 500$ m.

2/ Dans le triangle ABC rectangle en A, on peut utiliser tangente :

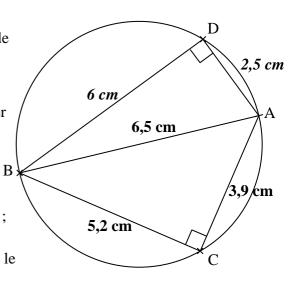
$$\frac{\text{Tan } 10^{\circ}}{1} = \frac{\text{AC}}{500} \text{ donc AC} = \frac{500 \times \tan 10^{\circ}}{1} \approx 88,16 \dots$$

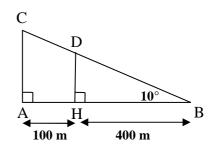
AC ≈ 88 m arrondi au mètre près.

3/ Dans le triangle ABC rectangle en A, on peut utiliser cosinus :

$$\frac{\text{Cos } 10^{\circ}}{1} = \frac{500}{\text{BC}} \text{ donc BC} = \frac{1 \times 500}{\cos 10^{\circ}} \approx 507,71 \dots$$

BC \approx 508 m arrondi au mètre.





4/ Dans le triangle BHD rectangle en H, on peut utiliser cosinus :

$$\frac{\text{Cos } 10^{\circ}}{1} = \frac{400}{\text{DB}} \text{ donc DB} = \frac{1 \times 400}{\text{cos } 10^{\circ}} \approx 406,17 \dots$$

 $DB \approx 406$ m arrondi au mètre près.

Exercice 3 (3 points)

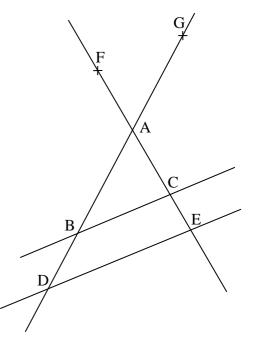
1/ Les droites (BD) et (CE) sont sécantes en A avec (BC) // (DE) alors on peut utiliser l'égalité de Thalès : $\frac{AB}{AD} = \frac{AC}{AE} = \frac{BC}{DE}$ donc

$$\frac{4}{AD} = \frac{3}{4.5} = \frac{BC}{DE}$$
; donc AD = $\frac{4 \times 4.5}{3} = \frac{18}{3} = 6$; ainsi AD = 6 cm.

2/ D'une part
$$\frac{AF}{AC} = \frac{4,05}{3}$$
 et d'autre part $\frac{AG}{AB} = \frac{5,4}{4}$; les produits en

croix sont
$$4,05 \times 4 = 16,20$$
 et $3 \times 5,4 = 16,20$; ainsi $\frac{AF}{AC} = \frac{AG}{AB}$

avec les points F, A et C alignés dans le même ordre que les points G, A et B ; alors d'après l'égalité de Thalès les droites (FG) et (BC) sont parallèles.



TROISIÈME PARTIE: QUESTIONS ENCHAÎNÉES (12 points)

Partie 1 (4 points)

1/ Le tableau 1 de l'annexe 1 est complété ci-dessous avec les compléments en gras.

Réduction en €	Prix de la place en €	Nombre de spetateurs	Recette du spectacle
0	20	500	$20 \times 500 = 10\ 000$
1	19	550	$19 \times 550 = 10450$
2	20 - 2 = 18	$500 + 2 \times 50 = 600$	$18 \times 600 = 10800$
6	20 - 6 = 14	$500 + 6 \times 50 = 800$	$14 \times 800 = 11\ 200$
10	20 - 10 = 10	$500 + 10 \times 50 = 1000$	$10 \times 1\ 000 = 10\ 000$

2/ Le tableau 2 de l'annexe 1 est complété ci-dessous avec les compléments en gras.

Réduction en €	Prix de la place en €	Nombre de spetateurs	Recette du spectacle
\boldsymbol{x}	20-x	$500 + x \times 50 = 500 + 50x$	(20-x)(500+50x)

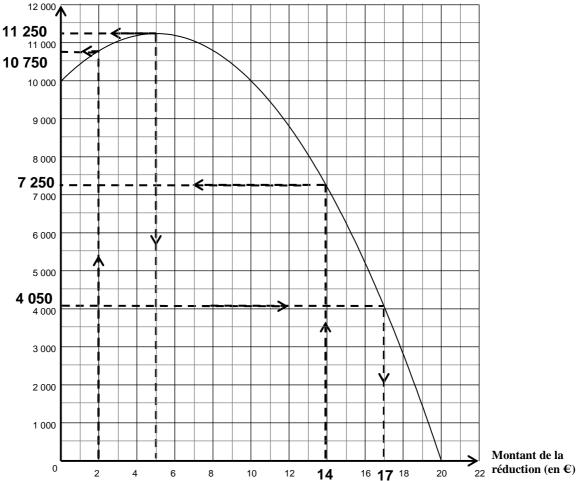
$$3/(500+50x)(20-x) = 10\ 000-500x+1\ 000x-50x^2+10\ 000=10\ 000+500x-50x^2.$$

Partie 2 (6 points)

Les lectures graphiques sont expliquées sur la courbe ci-dessous par des flèches et pointillés :

- 1/ Le montant de la recette pour une réduction de 2 € est égale à 10 750 euros environ.
- 2/ Le montant de la réduction d'une recette de 4 050 € est 17 € environ ; une place coûte 3 € environ.
- $3/R(14) \approx 7.250$; ce résultat représente le montant d'une recette pour une réduction de 14 €.
- (Le calcul non demandé donne $R(14) = 10\ 000 + 500 \times 14 50 \times 14^2 = 10\ 000 + 7\ 000 9\ 800 = 7\ 200$)
- 4/ Le montant de la recette maximale est **11 250** € environ ; la réduction est environ de **5** € donc le prix d'une place est 15 € environ.

Recette R(x) en \in



Partie 3 (2 points)

Les sièges sont disposés dans quatre zones : deux quarts de disques et deux trapèzes, séparées par des allées ayant une largeur de 2 m. On peut placer en moyenne 1,8 siège par m² dans la zone des sièges.

$$\mathcal{A}(\text{trapèze}) = \frac{[13 + \frac{(16 - 2)}{2}] \times 10}{2} = \frac{(13 + 7) \times 10}{2} = 100 ;$$

 $\mathcal{H}(\text{trapèze}) = 100 \text{ m}^2.$

 $100 \times 1,8$... donc dans un trapèze on ne peut placer que 180 sièges.

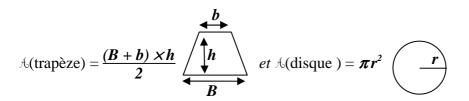
$$\mathcal{A}(\text{quart de disque}) = \frac{\pi \times 13^2}{4} = \frac{\pi \times 169}{4} \approx 132,732 \dots$$

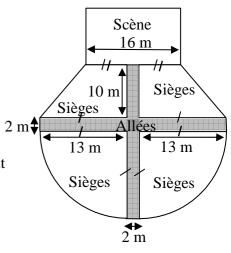
 $\mathcal{A}(\text{quart de disque}) = 132,732 \dots \text{m}^2.$

 $132{,}732\ldots\times1{,}8\approx238{,}918\ldots$ donc dans un quart de cercle on ne peut placer que 238 sièges.

$$180 \times 2 + 238 \times 2 = 836$$
.

Donc le nombre de places disponibles dans ce théâtre est 836.





ACTIVITES NUMERIQUES:

Exercice 1 : (4 points)

1 point par bonne réponse

Exercice 2 : (4 points)

1/1,5 pour l'algorithme d'Euclide.

2/0,5 pour la réduction de la fraction.

3/ a/ 1 avec seulement 0,5 si pas de justification.

3/b/1.

Exercice 3: (4 points)

1/1 (citer les issues)

2/a/0.5; b/0.5 + 0.5; c/0.5; d/0.5; e/0.5.

ACTIVITES GEOMETRIQUES:

Exercice 1: (5 points)

1 pour la figure complète.

1/1 pour démontrer que le triangle est rectangle.

2/1,5 pour Pythagore.

3/1,5 pour la réciproque de Pythagore.

Exercice 2 : (4 points)

1 point pour chaque question.

Exercice 3: (3 points)

1/1,5 pour Thalès.

2/1,5 pour la réciproque.

QUESTIONS ENCHAINEES:

Partie 1 : (4 points)

1/3 pour le tableau : si une ligne fausse : -1, si deux lignes fausses : -2,

s'il n'y a que $19 \times 550 = 10450$ de correct : 0,5.

2/0,5 pour le second tableau.

3/0,5 pour le développement.

Partie 2 : (6 points)

1,5 pour chaque lecture graphique.

Partie 3 : (2 points) laissés à l'appréciation personnelle du correcteur !!!!