PRODUIT À SOMME CONSTANTE

Objectif Étudier les variations d'une fonction numérique par transposition dans un cadre

géométrique.

Outils Premières définitions relatives aux fonctions numériques : monotonie sur un

intervalle, extremum.

On se propose d'étudier comment varie le produit de deux nombres réels positifs dont la somme est constante.

A. Investigation numérique

Voici les dimensions de plusieurs rectangles dont le demi périmètre est égal à 12 :

mesure du premier côté	1	2,5	4	5,2	6	8	9	10,7
mesure du deuxième côté	11	9,5	8	6,8	6	4	3	1,3
aire du rectangle								

Compléter ce tableau.

Quelles propriétés relatives aux aires de ces rectangles peut-on observer ?

Note

On trouvera en annexe un mode de génération de tels rectangles qui met en évidence l'existence d'un rectangle d'aire maximale.

B. Étude générale

Soit deux nombres réels positifs a et b dont la somme a+b est égale au nombre réel strictement positif donné s.

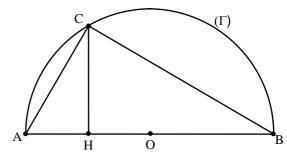
En fonction de a, le produit ab s'écrit donc a (s-a).

Le problème consiste à étudier les variations de la fonction p définie sur l'intervalle [0; s] par p(a) = a(s-a).

1. Modélisation géométrique.

Soit un demi-cercle (Γ) de centre O et de diamètre [AB] tel que AB = s.

Soit H le point du segment [AB] tel que AH = a et HB = b.



Soit C le point d'intersection de (Γ) et de la perpendiculaire en H à la droite (AB).

a. Démontrer que $CH^2 = AH \times HB$.

INDICATION

Les angles \widehat{ACH} et \widehat{CBH} ont la même mesure.

- b. En déduire la traduction de p en termes géométriques : p : $AH \mapsto CH^2$
- 2. Existence d'un maximum.
 - a. Observer que CH² admet une valeur maximale pour une position de H que l'on précisera.
 - b. En déduire que la fonction p admet un maximum pour une valeur de a que l'on précisera.
- 3. Variation du produit.
 - a. Examiner les variations de CH² lorsque H décrit le segment [AB], de A vers B.
 - b. Dresser le tableau des variations de la fonction p sur l'intervalle [0; s].

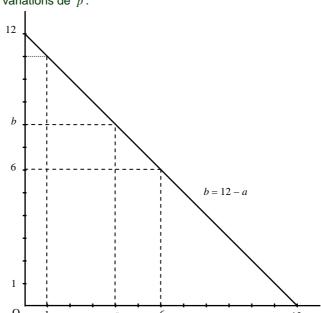
Note

On trouvera en annexe une étude algébrique des variations de $\,p\,$.

Addenda

A. Représentation des rectangles dont le demi périmètre est 12.

Comparer, à l'aide de ce graphique, l'aire d'un tel rectangle à l'aire du carré de côté 6.



B. Variation du produit

On reprend les notations de la partie B du problème.

- 1. Vérifier que $CH^2 = OC^2 OH^2$.
 - H décrivant le segment [AB] de A vers B, examiner les variations de OH, puis les variations correspondantes de CH².
- 2. Démontrer que : $p(a) = \left(\frac{s}{2}\right)^2 \left(\frac{s}{2} a\right)^2$.

En utilisant cette expression de p(a):

- démontrer que la fonction p admet un maximum pour une valeur de a que l'on précisera ;
- démontrer que p est strictement croissante sur l'intervalle $\left[0;\frac{s}{2}\right]$ et strictement décroissante

sur l'intervalle $\left[\begin{array}{c} \frac{s}{2}; s \end{array}\right]$.