PROBLÈME ANALYTICO-ÉLECTRIQUE

Objectif

Montrer l'utilité de l'Analyse pour résoudre un problème de physique.

Outils

Lien entre signe de la dérivée et monotonie.

On monte en série un générateur de tension, de force électromotrice E donnée, avec un conducteur ohmique de résistance R. On note r la résistance du montage autre que R (résistance interne du générateur, augmentée de celle des fils de branchement, etc.).

Soit Q la chaleur fournie par effet Joule par ce conducteur pendant le temps t et P la puissance dégagée. On a Q = P t.

Quelle doit être la valeur de la résistance R pour que la puissance (et donc la chaleur) dégagée soit maximale ?

Référence : Cours élémentaire de Mathématiques supérieures, Tome 2,Fonctions, p. 89, J. Quinet, éd. Dunod.

1. Exprimer *P* à l'aide de *R* et *I*, où *I* est l'intensité du courant dans le circuit.

Justifier que
$$I = \frac{E}{r+R}$$
.

En déduire l'expression de P en fonction de E, r et R.

2. Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{x}{(x+r)^2}$, r étant un réel strictement positif donné.

Étudier les variations de f sur [0; + ∞ [.

- 3. a. Trouver une relation entre P et f(R).
 - b. Déduire de l'étude précédente la valeur de R cherchée.
- 4. Complément.
 - a. Déterminer $\lim_{x \to +\infty} f(x)$
 - b. Quelle interprétation physique en déduit-on pour l'effet Joule fourni par le conducteur ?