Etablissement : Lycée professionnel Jean Garnier – Morcenx		
Certificat d'aptitude Professionnelle	Secteur: 2	Session: 2008
Contrôle en cours de formation (CCF) n°1/2 MATHEMATIQUES		Durée : 30 minutes

NOM et **Prénom** du CANDIDAT : CORRIGE

Date de l'évaluation : mercredi 19 mars 2008

 $\mathbf{CAP}: PP-PAR-CAMO$

Question	Domaine	Compétences
2)a - 1)b - 2)a - 3)c -1)a- 2)b	Calcul numérique	 Effectuer un calcul isolé Convertir une mesure Passer d'un résultat calculatrice à la notation scientifique Déterminer la valeur arrondie à 10ⁿ
3)b	Proportionnalité	Traiter un problème de proportionnalité
2)e - 3)a -2)d - 2)d	Géométrie plane	 Déterminer la mesure d'un angle Identifier un axe de symétrie Identifier un polygone usuel Calculer une aire d'une figure usuelle
2)b - 4) - 2)c	Propriété de Pythagore et de Thalès	 Calculer une longueur dans un triangle rectangle (Pythagore) Identifier un triangle rectangle (réciproque de Pythagore) Calculer la longueur d'un segment (Propriété de Thalès)

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies.

L'usage des calculatrices alphanumériques ou à écran graphique est autorisé à condition que leur fonctionnement soit autonome (circulaire N^99-186 du 16-11-1999).

L'usage du formulaire officiel de mathématiques est autorisé.

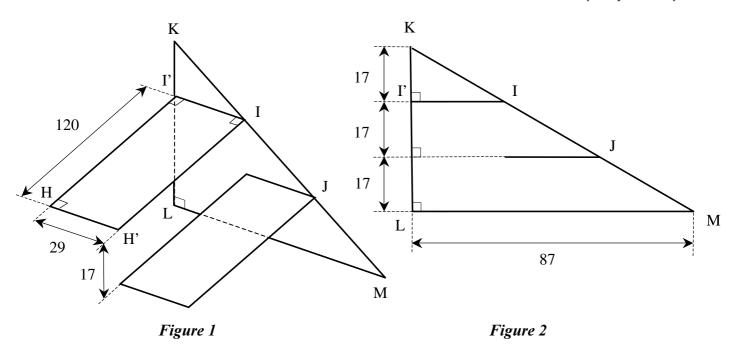
NOTE:

Des ouvriers du bâtiment travaillent sur un chantier.

1) Le maçon utilise du ciment qui, une fois sec, a une masse volumique $\rho = 2 \ 400 \ \text{kg/m}^3$.

(2 points)

a - Ecrire 2 400 en notation scientifique.


$$2 400 = 2,4 \times 10^3$$

b - Un autre ciment à une masse volumique de 2,18×10³ kg/m³. Donner l'écriture décimale de 2,18×10³.

$$2,18 \times 10^3 = 2 \ 180$$

2) Le menuisier installe un petit escalier en bois sur le pas d'une porte. Chaque contremarche a une hauteur de 17 cm et l'encombrement au sol LM = 87 cm (voir figures).

(10 points)

a- Calculer la hauteur à gravir KL en centimètres. Convertir en millimètres.

$$KL = 3 \times 17 = 51 \text{ cm} = 510 \text{ mm}$$
 $\frac{1}{2} + \frac{1}{2}$

b- Calculer la ligne des nez c'est-à-dire la distance KM, en cm, et citer le théorème utilisé. Arrondir au 1/10^{ème} de cm près.

D'après le théorème de Pythagore : $\frac{1}{2}$ $KM^2 = KL^2 + LM^2$ $= 51^2 + 87^2$ = 10 170 $KM = \sqrt{10170} = 100,846...$ 1 pt $\approx 100.8 \text{ cm}$ $\frac{1}{2}$

c- On considère KM = 100,8 cm. Calculer la distance KI et citer la propriété utilisée.

1^{ère} méthode:

Le triangle KI'I est 3× plus petit que le triangle KLM donc ½

$$KI = KM \div 3 = 100,8 \div 3 = 33,6 \text{ cm}$$
 2 pts

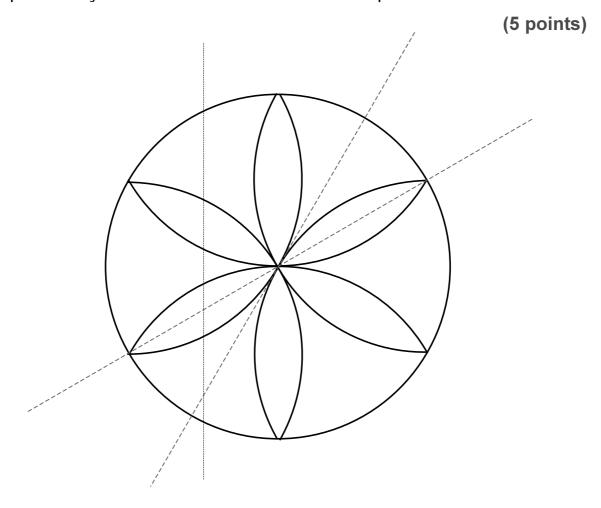
2^{ème} méthode:

D'après la propriété de Thalès ½

$$\frac{KI'}{KL} = \frac{KI}{KM}$$
 soit $\frac{17}{51} = \frac{KI}{100.8}$

d'où KI =
$$17 \times 100,8 \div 51 = 33,6 \text{ cm}$$
 2 pts

d- Le giron l'I = 29 cm et l'emmarchement l'H = 120 cm (voir **figure 1**). Calculer l'aire de la surface l'IH'H du dessus d'une marche.


I'IH'H est un rectangle.

Aire_(l'IH'H) = longueur ×largeur
=
$$120 \text{ cm} \times 29 \text{ cm}$$

= $3 480 \text{ cm}^2$ 2pts

e- Le schéma de la figure 2 étant à l'échelle, mesurer l'angle \hat{K} au degré près.

$$\hat{\mathbf{K}} \approx 60^{\circ}$$
 (+/- 1°) $1 + \frac{1}{2}$ pts

3) Le plâtrier façonne une rosace au dessus de la porte d'entrée.

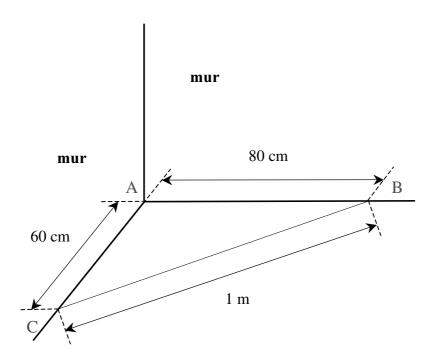
a- Parmi les trois axes en pointillés représentés, repasser en couleur ceux qui sont des axes de symétrie de la rosace.

$$1 + 1pts$$

b- Le plâtrier a travaillé pendant 6h30 min. Calculer le montant des travaux à raison de 60 € de l'heure.

$$6h30min = 6,5 h$$

 $6,5 \times 60$ € = 390 € 1,5 pt


c- Le plâtrier a débuté les travaux à 7h 45 min, à quelle heure a-t-il terminé s'il a travaillé sans interruption pendant 6h30 min ?

$$7h45min + 6h30min = 14h15min$$
 1,5 pt

4) Pour vérifier que deux murs sont perpendiculaires, le maçon trace deux traits : l'un à 60 cm du coin, l'autre à 80 cm. Il mesure ensuite la distance entre les traits. Si cette distance est de 1m, les deux murs forment bien un angle droit (voir **figure** ci-dessous).

Justifier rigoureusement cette façon de faire.

(3 points)

$$AB^2 + AC^2 = 60^2 + 80^2 = 10000$$

1 m = 100 cm

 $BC^2 = 100^2 = 10000$

D'après la réciproque du Théorème de Pythagore,

comme $AB^2 + AC^2 = BC^2$,

l'angle \hat{A} est droit.