Cahier d'exercices d'arithmétique (collège) 3 - Division euclidienne

Françoise Bastiat, Michel Bénassy, Pierre Roques Equipe académique Mathématiques Bordeaux, 11 juin 2001

I. Approche de la division euclidienne (sens de l'opération)

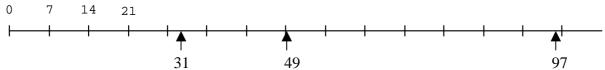
 6^{eme}

Dans un grand magasin, on vend des vidéocassettes à 12 €l'une et des vidéodisques à 16 €l'un.

- 1) Avec l'argent dont elle dispose, Alice constate qu'elle peut acheter trois vidéocassettes et qu'il lui restera encore 10 € De quelle somme d'argent Alice dispose-t-elle ?
- 2) Avec l'argent dont il dispose, Benoît constate qu'il peut acheter trois vidéodisques, mais pas quatre. Donner un encadrement de la somme d'argent dont dispose Benoît.
- 3) Céline dispose de 84 €
 - Combien peut-elle acheter de vidéocassettes ? Quelle somme lui restera-t-il ?
 - Combien peut-elle acheter de vidéodisques ? Quelle somme lui restera-t-il ?
- 4) Le responsable du rayon audiovisuel fait l'inventaire.
 - Les vidéocassettes sont rangées en boîtes de quinze. Vingt-deux boîtes sont complètes et la dernière contient huit vidéocassettes. Quel est le nombre total de vidéocassettes ?
 - Les deux cent quatre-vingt-seize vidéodisques sont en vrac.
 Il veut recomposer des boîtes de quinze. Combien de boîtes complètes remplira-t-il ?
 Combien de vidéodisques contiendra la dernière boîte ?

II. Approche de la division euclidienne (définition)

1) Sur la demi-droite graduée ci-dessous, ont été placés quelques multiples de 7 puis les nombres 31, 49 et 97 :



Compléter les encadrements, les égalités et les opérations ci-dessous :

$$7 \times \dots \leq 31 < 7 \times \dots$$
 $7 \times \dots \leq 49 < 7 \times \dots$
 $7 \times \dots \leq 97 < 7 \times \dots$
 $31 = (7 \times \dots) + \dots$
 $49 = (7 \times \dots) + \dots$
 $97 = (7 \times \dots) + \dots$
 $31 = (7 \times \dots) + \dots$
 $(avec \dots < 7)$
 $97 = (7 \times \dots) + \dots$
 $31 = (7 \times \dots) + \dots$
 $(avec \dots < 7)$
 $97 = (7 \times \dots) + \dots$
 $31 = (7 \times \dots) + \dots$
 $(avec \dots < 7)$
 $(avec \dots < 7)$

- 2) Citer tous les nombres dont le quotient dans la division euclidienne par 7 est égal à 4.
 - Citer quelques nombres dont le reste dans la division euclidienne par 7 est égal à 5.
 - Citer un nombre dont le quotient dans la division euclidienne par 7 est égal à 0. Quel est alors le reste ?
 - Citer un nombre dont le quotient dans la division euclidienne par 7 est égal à 1. Quel est alors le reste ?
- 3) Compléter par le plus grand nombre entier possible :

 $..... \times 8 \le 37$ $13 \times \le 252$ $..... \times 152 \le 12$ $23 \times \le 69$

Compléter par le plus petit nombre entier possible :

 $35 < 7 \times \dots$ $130 < \dots \times 11$ $39 < 68 \times \dots$ $74 < \dots \times 54$

III. Reconnaître une division euclidienne

 6^{eme} et 5^{eme}

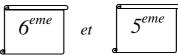
En prenant appui sur l'exemple suivant :

$25 \times 6 \le 162 < 25 \times 7$	$162 = 25 \times 6 + 12$	$\frac{162}{25} = 6 + \frac{12}{25}$	162	25
	(avec $12 < 25$)	(avec 6 entier et $\frac{12}{25}$ < 1)	1 2	6

compléter le tableau en identifiant dans chaque cas la division euclidienne évoquée :

37 × ≤ 464 < 37 ×	= × + (avec <)	$\frac{\dots}{\dots} = \dots + \frac{\dots}{\dots}$ (avec entier et $\frac{\dots}{\dots} < 1$)	
×≤<×	= $52 \times 11 + 23$ (avec 23 < 52)	$\frac{\cdots}{\cdots} = \cdots + \frac{\cdots}{\cdots}$ (avec entier et $\frac{\cdots}{\cdots} < 1$)	
×≤<×	= × + (avec <)	$\frac{\dots}{\dots} = \dots + \frac{\dots}{\dots}$ (avec entier et $\frac{\dots}{\dots} < 1$)	287 39
×≤<×	= × + (avec <)	$\frac{135}{18} = \dots + \frac{\dots}{\dots}$ (avec entier et $\frac{\dots}{18} < 1$)	

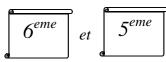
IV. D'une division euclidienne à une autre



- Sachant que dans la division euclidienne de 1075 par 39, le quotient est 27 et le reste 22, trouver (sans poser l'opération) le reste et le quotient dans la division euclidienne de 1075 par 27.
- Sachant que dans la division euclidienne de 1234 par 43, le quotient est 28 et le reste 30, trouver (sans poser l'opération) le reste et le quotient dans la division euclidienne de 1234 par 28.
- Sachant que dans la division euclidienne de 100 par 31, le quotient est 3 et le reste 7, compléter, sans poser aucune division, le tableau suivant :

La divisio	on eucli	idienne	donne pour quotient :	et pour reste :
de 200	par	62		
de 300	par	93		
de	par	279	3	63
de 1200	par	••••	3	84

V. L'art d'accommoder les restes



- 1) En 1860, dans l'Ouest américain, Joe the Crook, à la tête de trente hors-la loi, attaque les diligences pour rançonner les voyageurs.
 - a. Lors d'une première attaque, le butin s'élève à 388 pièces d'or.

Le chef dit à ses trente compagnons :

« Partagez ces pièces d'or entre vous de façon égale Je prendrai le reste ».

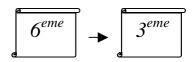
Quelle est la part de chacun des bandits ? Quelle est la part de Joe ?

- b. Lors d'une deuxième attaque, le butin s'élève à 457 pièces d'or.
 - Joe va-t-il procéder au partage selon la même règle ?
 - En proposant une nouvelle règle de partage (toujours équitable pour ses compagnons) le chef obtient 37 pièces d'or. Comment a-t-il procédé pour répartir le butin ?
- 2) Un musée organise des visites guidées à l'intention des élèves d'une même école. On répartit ces élèves en groupes, éventuellement inégaux, dont aucun ne comporte plus de vingt-quatre enfants ni moins de vingt.
 - a. L'école Jules Ferry compte 158 élèves. Combien fera-t-on de groupes ?
 - Donner deux exemples de formation de ces groupes.
 - b. L'école Victor Hugo compte 212 élèves.

Combien fera-t-on de groupes ?

Donner, pour chacune des solutions possibles, un exemple de formation des groupes.

VI. Divisions euclidiennes pour tous



Les exercices ci-après peuvent être proposés à des élèves de Sixième.

Il sera intéressant de les « revisiter » dans les classes suivantes où l'enrichissement progressif des connaissances dans les domaines du calcul numérique, du calcul littéral, de la résolution d'équations et d'inéquations autorise d'autres modalités de traitement.

- Dans une division euclidienne, le diviseur est 23 et le reste est 10.
 De combien peut-on augmenter le dividende sans changer le quotient entier ?
 Quels nombres peut-on retrancher au dividende pour que le quotient diminue d'une unité ?
- 2) Quels sont les nombres dont la division euclidienne par 5 donne un reste égal au quotient ? Quels sont les nombres dont le quotient dans la division euclidienne par 4 est égal au triple du reste ?
- 3) Quels sont les nombres entiers inférieurs à 50 dont le reste dans la division euclidienne par 7 est égal à 4 ? Combien y a-t-il de nombres entiers inférieurs à 700 dont le reste dans la division euclidienne par 76 est égal à 28 ?
- 4) On découpe une feuille de papier en 5 morceaux, puis l'un des morceaux est choisi et est découpé en 5 morceaux ... et ainsi de suite.

 Au bout de combien d'étapes obtient-on 61 morceaux ?

VII. Division euclidienne et calcul algébrique

- 1) Dans une division euclidienne, on augmente le dividende de 1989 et le diviseur de 13, et l'on constate que le quotient et le reste sont inchangés. Quel est ce quotient ?
- 2) La somme de deux nombres entiers est égale à 1999. Dans la division euclidienne du plus grand par le plus petit, le quotient est égal à 5 et le reste est égal à 7.

Quels sont ces deux nombres entiers?

3) Dans la division euclidienne de l'entier naturel x par 7, le reste est égal à 4. Dans la division euclidienne de l'entier naturel y par 7, le reste est égal à 6.

Quel est le reste obtenu dans la division euclidienne de x + y par 7?

Quel est le reste obtenu dans la division euclidienne de 9x par 7?

Quel est le reste obtenu dans la division euclidienne de x^2 par 7?

4) Dans une division euclidienne, on multiplie le dividende et le diviseur par un même entier naturel non nul.

Que deviennent alors le quotient et le reste?

- 5) Démontrer que parmi trois entiers naturels consécutifs, l'un d'eux est un multiple de 3. Démontrer que le produit de sept entiers naturels consécutifs est un multiple de 7.
- 6) Soit n un entier naturel. Quels sont les restes possibles dans la division euclidienne de n^2 par 3? En déduire, sans calcul, que le nombre $235583^2 - 1$ est un multiple de 3.

VIII. Récréations numériques

- 1) Quel est le chiffre des unités de chacun des nombres 3³, 3⁴, 3⁵, 3⁶, 3⁷ 3⁵⁰ ? Quel est le chiffre des unités du nombre 9⁵⁰ ?
- 2) Quels sont les restes obtenus dans la division euclidienne par 12 des nombres 13, 13², 13³, 13⁴? Démontrer, sans calculer ce nombre, que 13⁵ 1 est divisible par 12.
- 3) Quels sont les restes obtenus dans la division euclidienne par 7 des nombres 39, 39^2 , 39^3 , 39^4 , 39^5 , 39^{36} , 39^{53} ?