FORMULAIRE BACCALAURÉAT PROFESSIONNEL Métiers de l'électricité

Fonction f :	<u>Dérivée f ' :</u>
f(x) $ax + b$	f'(x)
	$\frac{a}{2x}$
x^2	$3x^2$
x^3	
1	<u>-1</u>
$\frac{-}{x}$	$-\frac{1}{x^2}$
$\ln x$	1
	$\frac{\overline{x}}{x}$
e^x	e^x
e^{ax+b}	ae^{ax+b}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\sin(ax + b)$	$a\cos(ax+b)$
$\cos(ax+b)$	$-a \sin(ax + b)$
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)
u(x)v(x)	u'(x)v(x) + u(x)v'(x)
1	u'(x)
$\overline{u(x)}$	$-\frac{1}{[u(x)]^2}$
$\underline{u(x)}$	$\underline{u'(x)v(x)-u(x)v'(x)}$
v(x)	$[v(x)]^2$
	2

Équation du second degré: $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques :

Terme de rang 1 : u_1 et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + ... + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques :

Terme de rang 1 : u_1 et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des *k* premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Logarithme népérien : In

$$\frac{1}{\ln{(ab)}} = \ln{a} + \ln{b}$$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

$$\ln\left(a^n\right) = n \ln a$$

Équations différentielles :

$$y' - ay = 0$$

$$y = k e^{ax}$$

$$y'' + \omega^2 v = 0$$

$$y = a \cos \omega x + b \sin \omega x$$

Trigonométrie:

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

 $\sin 2a = 2 \sin a \cos a$

Nombres complexes : (j2 = -1)

forme algébrique forme trigonométrique
$$z = x + j y$$
 $z = \rho (\cos \theta + j \sin \theta)$ $z = x - j y$ $z = \rho (\cos \theta - j \sin \theta)$ $z = \sqrt{x^2 + y^2}$ $z = \rho (\cos \theta - j \sin \theta)$

 $\theta = \arg(z)$

Calcul vectoriel dans le plan:

$$\vec{v} \cdot \vec{v}' = xx' + yy'$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2}$$

Si
$$\vec{v} \neq \vec{0}$$
 et $\vec{v}' \neq \vec{0}$:

$$\vec{v} \cdot \vec{v}' = ||\vec{v}|| \times ||\vec{v}'|| \cos(\vec{v}, \vec{v}')$$

 $\vec{v} \cdot \vec{v}' = 0$ si et seulement si $\vec{v} \perp \vec{v}'$

Aires dans le plan :

Triangle : $\frac{1}{2}bc\sin \hat{A}$ Trapèze : $\frac{1}{2}(B+b)h$

Disque : πR^2

Aires et volumes dans l'espace :

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h : Volume Bh

Sphère de rayon R:

Aire:
$$4\pi R^2$$
 Volume: $\frac{4}{3}\pi R^3$

Cône de révolution ou pyramide de base B et de hauteur h: Volume $\frac{1}{3}Bh$

Calcul intégral:

* Relation de Chasles:

$$\int_{a}^{c} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{c} f(t) dt$$

*
$$\int_{a}^{b} (f+g)(t)dt = \int_{a}^{b} f(t)dt + \int_{a}^{b} g(t)dt$$

*
$$\int_{a}^{b} kf(t) dt = k \int_{a}^{b} f(t) dt$$