Professeur: Mr Chakib BELARIBI

Discipline: Math- Sciences

Etablissement: L.P Flora Tristan – Camblanes

Section: BEP BIOSERVICES (ind)

Objet : Fiche pédagogique élève

Titre: Les statistiques

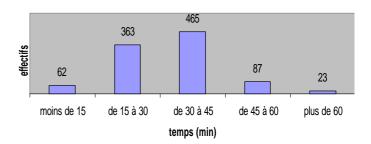
Nota: Dans ce qui suit ,le corrigé (trace écrite de l'élève) est en bleu et en caractère gras.

Chap . . .

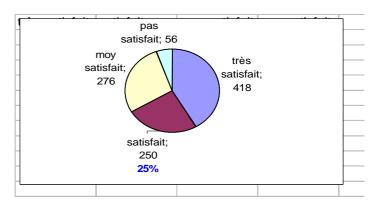
LES STATISTIQUES

OBJECTIFS : Etre capable de

- Etablir un tableau d'effectifs ou de fréquences.
- Représenter une série statistique par un diagramme.
- Tracer puis exploiter un polygone des effectifs cumulés.
- Calculer une moyenne, un écart-type et connaître leur signification.


I) Exemple de situation

QUESTIONNAIRE: On a interrogé 1000 clients sortant d'un magasin d'alimentation.


Q1 : Venez-vous régulièrement dans ce magasin ?

Oui Non 912 88

Q2 : Combien de temps venez-vous de passer dans ce magasin ?

Q3 :Etes-vous satisfait du choix qui vous est offert ?

II) L'étude statistique

Une étude statistique comporte généralement quatre étapes :

- le recueil des données : enquêtes, recensement, sondage,...
- la présentation des résultats : tableaux ou représentations graphiques.
- le calcul des paramètres caractéristiques : ils résument une série statistique en quelques nombres afin d'en faciliter l'interprétation.
- L'exploitation des données : Réviser une stratégie commerciale, prévoir un budget,....

III) Vocabulaire

<u>Travail demandé</u>:

Compléter ce qui suit:

- La population étudiée(clients interrogés) contient 1000 individus, c'est l'effectif total noté N
- -Dans l'exemple ,nous avons étudié trois aspects: client régulier, temps passé, satisfaction.

L'aspect étudié est appelé caractère sa valeur est notée x

On distingue:

- -Les caractères qualitatifs : couleur des yeux,profession,...
- -Les caractères quantitatifs, qui sont mesurables : taille,...

Exemple : Le nombre d'enfants (0, 1, 2...) est un caractère quantitatif discret. Le temps passé en minutes [0;15[;[15;30[;... est un caractère quantitatif continu,il peut prendre toutes les valeurs d'un intervalle.

IV) Effectifs et fréquences

Activité: Reprenons l'exemple ci-dessus (questionnaire, Q3, page 1).

Travail demandé

a) Compléter le tableau ci-contre, puis écrire la deuxième ligne.

Valeur du caractère

Effectif . . . Fréquence .

On dira que 25% des clients

interrogés sont satisfaits

b) Compléter, dans le cas « satisfait », le diagramme circulaire donné à la page 2.

Caractère x _i	Effectif n _i	Pourcentage %	Fréquence fi
x_1 = Très satisfait	$n_1 = 418$	$\frac{418}{1000}$ x100=41,8	$\mathbf{f}_1 = \frac{418}{1000} = 0.418$
$X_2 = Satisfait$	n ₂ = 250	25	f ₂ =0,25
Moy satisfait	276	27,6	0,276
Pas satisfait	56	5,6	0,056
Totaux	N=1000	100%	1

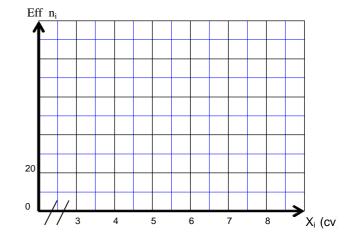
En résumé

Valeur du caractère $\mathbf{x_i}$ Effectif (pour la valeur $\mathbf{x_i}$) $\mathbf{n_i}$

Effectif total $N=n_1+n_2+...=\Sigma n_i$ Symbole somme (sigma) : Σ .

Fréquence (pour la valeur x_i) $f_i = \frac{n_i}{N}$, ex: $f_2 = \frac{n_2}{N} = \frac{250}{1000} = 0,25$ soit 25%

 $\Sigma f_i = 1$ ou 100%


V) Représentation d'une série statistique

1) Diagramme en bâtons

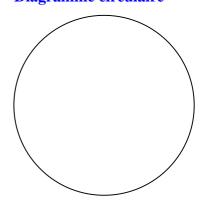
Activité : On s'intéresse à la puissance fiscale (en chevaux, cv) des voitures d'une entreprise.

Diagramme en bâtons des effectifs

Travail demandé

Construire le diagramme en bâtons des effectifs de cette série.

2) Diagramme circulaire

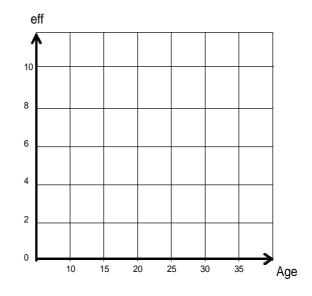

Activité : Les dépenses d'une commune sont réparties de la façon suivante :

Poste	Dépenses (k€)	Dépenses (en %)	Angle (en degrés)
Voirie	9,592	$\frac{9,592}{23,252}$ x100=41,25	$\frac{9,592}{23,252} \times 360^{\circ} = 148,5$
Enseignement-sport-culture-loisirs	5,456	23,46	84,5
Urbanisme-environnement	8,204	35,28	127
Totaux	23 ,252	100%	360°

Travail demandé

- a) Calculer le total des dépenses, puis compléter le tableau ci-dessus.
 Indication: chaque poste est représenté par un angle.
- **b)** A l'aide de votre rapporteur, construire le diagramme circulaire.

Diagramme circulaire



3) Histogramme

<u>Activité</u>: Les résultats du recensement à Belleville des personnes de 10 à 40 ans sont rassemblés dans le tableau ci-dessous.

Histogramme des effectifs

Age (ans)	Effectif
[10;15[8
[15;20[7
[20;25[9
[25;30[11
[30;35[8
[35;40[10

<u>Travail demandé</u>:

- a) Tracer l'histogramme des effectifs correspondant.
- b) La ligne qui joint les milieux des côtés supérieurs des rectangles est appelée polygone des effectifs.
 Tracer ce polygone.

Remarques

- Chaque classe est caractérisée par une amplitude : [15;20] a pour amplitude 20-15=5.
- Dans l'exemple étudié, les classes ont même amplitude; la hauteur du rectangle est proportionnelle à l'effectif des classes.

VI) Effectifs et fréquences cumulés

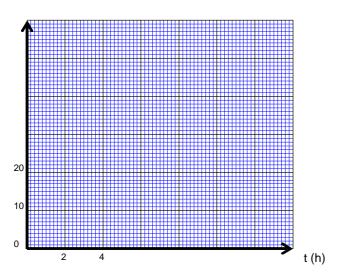
1) Effectifs cumulés croissants ECC et décroissants ECD

<u>Activité</u> : Le caractère étudié dans l'exemple qui suit,est le temps consacré par l'élève à ses loisirs durant le week-end précédent.

classe (heures)	Effectif n _i	ECC	ECD
[2;4[6	6	54
[4 ;6[11	6+11=17	54-6=48
[6;8[16	33	37
[8;10[11	44	21
[10;13[10	54	10
	N=54		

Lecture d'une classe: Tout nombre se trouvant dans l'intervalle [4;6[:

est au moins égal à 4 (>), et vaut moins que 6 (<).


Travail demandé

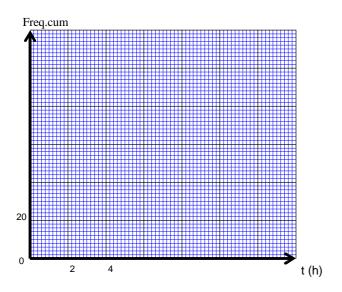
- a) Compléter ce qui suit, après lecture du tableau (x:représente le temps).
- Effectifs pour : x<4 **6** ; x<6 **6+11** ; x<8 **6+11+16**
- Il s'agit donc d'effectifs cumulés croissants ECC
- b) Traduire, à l'aide d'une phrase, le troisième cas (x<8): Il y a 33 élèves consacrant moins de 8 heures à leurs loisirs.
- c) Compléter le tableau proposé (ECC).
- d) Compléter ce qui suit :
- Effectif pour : x>2 **54** ; x>4 **54-6** ; x>6 **54-6-11**
- Il s'agit donc d'effectifs cumulés décroissants ECD
- e) Compléter le tableau (ECD).
- f) Ecrire les coordonnées des points permettant de représenter les polygones des effectifs cumulés :

- g) Tracer les polygones ECC et ECD. Joindre les points représentés à la règle ;nommer ce graphique.
- **h**) Déterminer graphiquement le nombre d'élèves consacrant : au moins 5 heures à leurs loisirs ; moins de 9 heures à leurs loisirs. Ecrire une phrase-réponse à côté du graphique.

Polygones des effectifs cumulés

Eff. cumu

2) Fréquences cumulées croissantes FCC et décroissantes FCD


Reprenons l'activité ci-dessus.

classe (heures)	Effectif n _i	Fréquence f _i (%)	FCC	FCD
[2;4[6	11,1	11,1	100
[4 ;6[11	20,4	11,1+20,4=31,5	100-11,1=88,9
[6;8[16	29,6	61,1	68,5
[8;10[11	20,4	81,5	38,9
[10;13[10	18,5	100	18,5
	N=54	100%		

Travail demandé

- a) Compléter la colonne 3 du tableau ci-dessus.
- b) Compléter le tableau des fréquences cumulées croissantes FCC et décroissantes FCD.
- d) Tracer le polygone FCC.
- **g**) Déterminer graphiquement le pourcentage d'élèves consacrant moins de 5 heures à leurs loisirs ; écrire une phrase-réponse à côté du graphique.

Polygone des fréquences cumulées croissantes

VII) Les paramètres de position

1) La médiane

C'est la valeur du caractère, notée x_m, qui partage la série statistique en deux effectifs égaux.

La médiane est déterminée graphiquement sur la courbe:

- ECC ,à mi-effectif cumulé (N/2) ,N étant l'effectif total ;

- FCC ,à mi-fréquence cumulée (50%);
- à l'intersection des polygones ECC et ECD.

Déterminer la valeur de la médiane de la série statistique étudiée, puis donner sa signification : médiane :7,2 heures .La moitié des élèves consacrent moins de 7,2 heures aux loisirs,l'autre moitié plus de 7,2 heures.

2) La moyenne

Activité 1 : La variable (le caractère) x_i est discrète

Un élève a obtenu ,au BEP, les résultats suivants :

Calculer la moyenne de cet élève :

.

Matière	Note	Coefficient
Français	11	4
Math-sc	9	4
EPS	14	1
Epreuve prof	11	16

Activité 2 : La variable est continue (utilisation de classes)

A la fin de la journée,un commerçant veut calculer le montant moyen des chèques encaissés :

Mantant (€)	Effectif n _i	Centre de classe x _i	Produit n _i x _i
[0;100[21	(100+0)/2 = 50	21x50=1050
[100 ;200[40	150	6000
[200 ;300[[300 ;400[38 17	250 350	9500 5950
[400 ;500[[500 ;600[12	450 550	5400 2200
Totaux	N=132	/	29050

Calculer la moyenne des montants des chèques : $\overline{x} = \frac{29050}{132} \cong 220$

Le montant moyen des chèques est égal à 220 €.

En résumé : Pour calculer une moyenne

- Notation de la moyenne \overline{x} Effectif total N.

- On calcule, si nécessaire, les centres de classe [a ;b[: $x_i = (a+b)/2$.

- On effectue les produits $n_i x_i$, puis on les somme.
- On détermine la valeur de la moyenne selon la relation :

$$\overline{x} = \frac{n_1x_1 + n_2x_2 + \dots}{N} = \frac{\sum n_ix_i}{N}$$

VIII) Variance et écart-type

Activité : Les élèves d'une classe ont effectué deux devoirs. Voici leurs notes:

Dev 1:
$$0; 3; 4; 5; 5; 6; 8,5; 11; 11; 11; 15; 17,5; 20$$
. moy: $x = 9$.

Dev 2: 7; 7; 7,5; 7,5; 8; 8; 8; 8,5; 9,5; 10,5; 10,5; 11; 11; 11. moy:
$$\overline{x} = 9$$
.

Travail demandé

a) Observer le tableau 1 puis compléter le tableau 2 ci-dessous ;

Tableau 1 (devoir 1)

Note x _i	Effectif n _i	$\left n_i \left(x_i - \overline{x} \right)^2 \right $
0	1	1(0,0)2,01
0	1	$1x(0-9)^2=81$
3	1	36
4	1	25
5	2	32
6	1	9
8,5	1	0,25
11	3	12
15	1	36
17,5	1	72,25
20	1	121
Totaux	N=13	424,5

Tableau 2 (devoir 2)

Note x _i	Effectif n _i	$\left(n_i \left(x_i - \overline{x} \right)^2 \right)$
7	2	$2x(7-9)^2=8$
7,5	2	4,5
8	2	2
8,5	1	0,25
9,5	1	0,25
7,5 8 8,5 9,5 10,5	2	4,5
11	3	12
Totaux	N=13	31,5

b) Calculer la variance notée V dans le deuxième cas :

$$V = \frac{\sum n_i (x_i - \overline{x})^2}{N}$$
 ; $V_1 = \frac{424.5}{13} = 32.7$; $V_2 = \frac{31.5}{13} = 2.4$

c) Calculer l'écart-type noté σ (sigma) dans le deuxième cas ; on donne $\sigma = \sqrt{V}$.

$$\sigma_1 = \sqrt{V_1} = 5.71$$
 ; $\sigma_2 = \sqrt{V_2} = 1.56$

d) Observer puis comparer la distribution des notes <u>autour de la moyenne</u> pour les deux devoirs.

Les notes du devoir 2 sont moins dispersées que celles du devoir 1, d'où: $\sigma_2 < \sigma_1$

En résumé

La variance V, ou l'écart-type σ , sont des paramètres de dispersion caractéristiques d'une série statistique ;pour les calculer on utilise les relations :

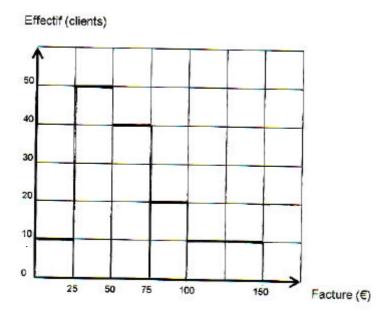
$$V = \frac{\sum n_i (x_i - \overline{x})^2}{N} \quad \text{ou} \quad V = \frac{\sum n_i x_i^2}{N} - \overline{x^2} \quad ; \quad \sigma = \sqrt{V} .$$

Avec N l'effectif total de la série, et $\frac{1}{x}$ la moyenne.

EXERCICES

Pour traiter les exercices qui suivent, consulter le cours afin de trouver les formules utiles, les modèles de tableaux ou de graphiques . . .

EX 1 Calcul d'un pourcentage-Diagramme circulaire


En 1993, l'Aquitaine a produit 232 312 tonnes de déchets-cartons .La répartition de ces déchets, selon la destination est donnée ci-dessous.

Destination	Déchets (tonnes)	Pourcentage (%)	Angle (degrés)
Décharge	94 871		
Valorisation énergétique	9 034		
Valorisation matière	101 141		
Destruction	13 327		
Autres	13 939		
Totaux			

- a) Compléter ce tableau.
- b) Construire le diagramme circulaire de cette répartition.

EX 2 Utilisation d'un histogramme-Effectifs cumulés-Moyenne

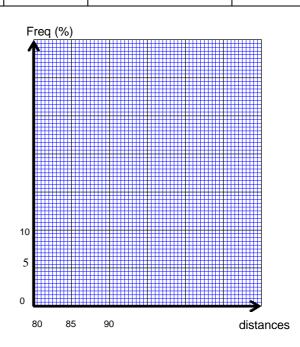
Le restaurant gastronomique « le marquis » fait en moyenne 25 repas par jour, du lundi au samedi. L'histogramme ci-dessous présente la répartition des factures des clients d'une semaine en fonction de leur montant :

a) Compléter les colonnes 1,2 et 3 du tableau donné en page 10.

Montant (€)	Effectif n _i	ECC	Centre de classe x _i	n _i x _i
[0;25[(0+25)/2=12,5	
[25;50[
Totaux		/	/	

- b) Tracer le polygone des effectifs cumulés croissants.
 - Echelles: axe des abscisses: 1 cm pour 25 €; axe des ordonnées: 1 cm pour 10 clients.
- c) Déterminer graphiquement le nombre de factures ayant un montant inférieur à 60 €.
- d) Compléter le tableau puis calculer le montant moyen des factures (la moyenne).

EX 3 Calcul de fréquence-Histogramme des fréquences-Fréquences cumulées


Une administration dispose d'un parc de véhicules et a relevé pour 104 d'entre eux les distances parcourues au moment de leur mise à la vente.

Distances parcourues	Effectif	n _i	Fréquence f _i	FCC	Centre de classe x _i	n _i x _i
(milliers de km)			(en %)			
[80 ;85[10					
[85;90[14					
[90;95[36					
[95;100[24					
[100 ;105[20					
Totaux						

- a) Compléter les colonnes 2 et 3 du tableau.
- b) Tracer l'histogramme des fréquences (graphique ci-contre).
- c) Compléter la colonne 4 (FCC).
- d) Tracer, sur une feuille-réponse, le polygone des fréquences cumulées croissantes.

Echelles:

- axe des abscisses: voir histogramme.
- axe des ordonnées: 1 cm pour 10 %.
- e) Par lecture du tableau, dire combien de véhicules ont parcouru moins de 95 000 km.
- f) Déterminer graphiquement le pourcentage de véhicules ayant parcouru moins de 87 000 km.
- g) Déterminer graphiquement la médiane de cette série statistique;donner sa signification.
- h) Compléter le tableau, puis calculer le kilométrage moyen parcouru.

EX 4 Calcul de l'écart-type

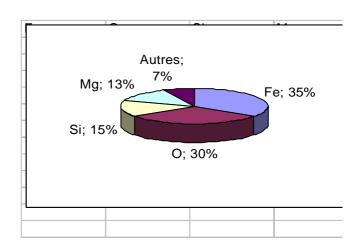
La répartition des âges des 54 élèves des sections de BEP d'un lycée est donnée par le tableau ci-contre.

L'age moyen est égal à : $\bar{x} = 17,7$ ans.

Calculer la variance puis l'écart-type de cette série statistique.

Age (ans)	Effectif	Centre de	$n_i (x_i - \overline{x})^2$
	n_i	classe x _i	
[15 ;16[3		
[16;17[10		
[17;18[18		
[18;19[17		
[19;20[6		
Totaux			

EX 5 Utilisation de la calculatrice


A partir du mode d'emploi de votre calculatrice, écrire la séquence qui vous permet de calculer directement :

- la moyenne (exercice 3)
- l'écart-type (exercice 4)

EX 6 Représentations d'une série statistique

Voici la représentation des pourcentages en masse des éléments chimiques du globe terrestre :

- a) Comment se nomme cette représentation?
- b) Représenter ces pourcentages à l'aide d'un diagramme en bâtons.

